Question 17–4: A 10-hp split-phase motor running at 1750 rev/min is used to...

A 10-hp split-phase motor running at 1750 rev/min is used to drive a rotary pump, which operates 24 hours per day. An engineer has specified a 7.4-in small sheave, an 11-in large sheave, and three B112 belts. The service factor of 1.2 was augmented by 0.1 because of the continuous-duty requirement. Analyze the drive and estimate the belt life in passes and hours.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The peripheral speed V of the belt is

 

V=\pi d n / 12=\pi(7.4) 1750 / 12=3390 ft / min

 

Table 17–11: L_{p}=L+L_{c}=112+1.8=113.8 \text { in }

 

Eq. (17–16b): \begin{aligned}C=& 0.25\left\{\left[113.8-\frac{\pi}{2}(11+7.4)\right]\right.\\&\left.+\sqrt{\left[113.8-\frac{\pi}{2}(11+7.4)\right]^{2}-2(11-7.4)^{2}}\right\}\end{aligned}

 

= 42.4 in

 

C=0.25\left\{\left[L_{p}-\frac{\pi}{2}(D+d)\right]+\sqrt{\left[L_{p}-\frac{\pi}{2}(D+d)\right]^{2}-2(D-d)^{2}}\right\}    (17–16b)

 

Eq. (17–1):\begin{array}{c}\phi=\theta_{d}=\pi-2 \sin ^{-1}(11-7.4) /[2(42.4)]=3.057 rad \\\exp[0.5123(3.057)]=4.788\end{array}

 

\theta_{D}=\pi+2 \sin ^{-1} \frac{D-d}{2 C}        (17–1)

 

Interpolating in Table 17–12 for V = 3390 ft/min givesH_{ tab }=4.693 hp. The wrap angle in degrees is 3.057(180) / \pi=175^{\circ} .. From Table 17–13, K1 5 0.99. From Table 17–14, K_{2}=1.05 . Thus, from Eq. (17–17),

 

H_{a}=K_{1} K_{2} H_{ tab }        (17–17)

 

H_{a}=K_{1} K_{2} H_{\text {tab }}=0.99(1.05) 4.693=4.878 hp

 

Eq. (17–19):  H_{d}=H_{ nom } K_{s} n_{d}=10(1.2+0.1)(1)=13 hp

 

H_{d}=H_{ nom } K_{s} n_{d}    (17–19)

Eq. (17–20): N\geq H_{d}/H_{a}=13/4.878=2.67\rightarrow 3

N_{b} \geq \frac{H_{d}}{H_{a}} \quad N_{b}=1,2,3, \ldots    (17–20)

 

From Table 17–16, K_{c}=0.965. Thus, from Eq. (17–21),

 

F_{c}=K_{c}\left(\frac{V}{1000}\right)^{2}    (17–21)

 

F_{c}=0.965(3390 / 1000)^{2}=11.1 lbf

 

Eq. (17–22): \Delta F=\frac{63025(13) / 3}{1750(7.4 / 2)}=42.2 lbf

 

\Delta F=\frac{63025 H_{d} / N_{b}}{n(d / 2)}    (17–22)

 

Eq. (17–23): F_{1}=11.1+\frac{42.2(4.788)}{4.788-1}=64.4 lbf

 

F_{1}=F_{c}+\frac{\Delta F \exp (f \phi)}{\exp (f \phi)-1}    (17–23)

 

Eq. (17–24):  F_{2}=F_{1}-\Delta F=64.4-42.2=22.2 lbf

 

F_{2}=F_{1}-\Delta F     (17–24)

 

Eq. (17–25): F_{i}=\frac{64.4+22.2}{2}-11.1=32.2 lbf

 

F_{i}=\frac{F_{1}+F_{2}}{2}-F_{c}      (17–25)

 

Eq. (17–26): n_{f s}=\frac{H_{a} N_{b}}{H_{ nom } K_{s}}=\frac{4.878(3)}{10(1.3)}=1.13

 

n_{f s}=\frac{H_{a} N_{b}}{H_{ nom } K_{s}}      (17–26)

 

Life: From Table 17–16, K_{b}=576 .

 

\left(F_{b}\right)_{1}=\frac{K_{b}}{d}=\frac{576}{7.4}=77.8 lbf

 

\left(F_{b}\right)_{2}=\frac{576}{11}=52.4 lbf

 

T_{1}=F_{1}+\left(F_{b}\right)_{1}=64.4+77.8=142.2 lbf

 

T_{2}=F_{1}+\left(F_{b}\right)_{2}=64.4+52.4=116.8 lbf

 

From Table 17–17, K = 1193 and b = 10.926.

 

\text { Eq. (17-27): } \quad N_{P}=\left[\left(\frac{1193}{142.2}\right)^{-10.926}+\left(\frac{1193}{116.8}\right)^{-10.926}\right]^{-1}=11\left(10^{9}\right) \text { passes }

 

N_{P}=\left[\left(\frac{K}{T_{1}}\right)^{-b}+\left(\frac{K}{T_{2}}\right)^{-b}\right]^{-1}    (17–27)

 

Since N_{P} is out of the validity range of Eq. (17–27), life is reported as greater than 10^{9} passes. Then

 

Eq. (17–28): t>\frac{10^{9}(113.8)}{720(3390)}=46600 h

 

t=\frac{N_{P} L_{p}}{720 V }    (17–28)

 

 

 

 

ج
جججج
ججججججج
ججججججججججججججج
ح
حح

Related Answered Questions