Determine the force in members LK, KC, and CD of the Pratt truss and state if the members are in tension or compression.
⤹ +\Sigma M_{A}=0 ; \quad G_{y}(12 \mathrm{~m})-20 \mathrm{kN}(2 \mathrm{~m})
-30 \mathrm{kN}(4 \mathrm{~m})-40 \mathrm{kN}(6 \mathrm{~m})=0
G_{y}=33.33 \mathrm{kN}
+\uparrow \Sigma F_{y}=0 ; F_{K C}+33.33 \mathrm{kN}-40 \mathrm{kN}=0
F_{K C}=6.67 \mathrm{kN}(\mathrm{C})
⤹ +\Sigma M_{K}=0
33.33 \mathrm{kN}(8 \mathrm{~m})-40 \mathrm{kN}(2 \mathrm{~m})-F_{C D}(3 \mathrm{~m})=0
F_{C D}=62.22 \mathrm{kN}=62.2 \mathrm{kN}(\mathrm{T})
\stackrel{+}{\to } \Sigma F_{x}=0 ; \quad F_{L K}-62.22 \mathrm{kN}=0
F_{L K}=62.2 \mathrm{kN}(\mathrm{C})