Determine the force in members Kl, KD, and CD of the Pratt truss and state if the members are in tension or compression.
From the geometry of the truss,
\phi=\tan ^{-1}(3 \mathrm{~m} / 2 \mathrm{~m})=56.31^{\circ}.
⤹ +\Sigma M_{K}=0;
33.33 \mathrm{kN}(8 \mathrm{~m})-40 \mathrm{kN}(2 \mathrm{~m})-F_{C D}(3 \mathrm{~m})=0
F_{C D}=62.2 \mathrm{kN}(\mathrm{T})
⤹ +\Sigma M_{D}=0 ; \quad 33.33 \mathrm{kN}(6 \mathrm{~m})-F_{K J}(3 \mathrm{~m})=0
F_{K J}=66.7 \mathrm{kN}(\mathrm{C})
+\uparrow \Sigma F_{y}=0
33.33 \mathrm{kN}-40 \mathrm{kN}+F_{K D} \sin 56.31^{\circ}=0
F_{K D}=8.01 \mathrm{kN}(\mathrm{T})