Determine the minimum dimension a to the nearest \mathrm{mm} of the beam’s cross section to safely support the load. The wood has an allowable normal stress of \sigma_{\text {allow }}=12 \mathrm{MPa} and an allowable shear stress of \tau_{\text {allow }}=1.5 \mathrm{MPa}.
At the supports,
V_{\max }=10 \mathrm{kN}Under 15-kN load,
\begin{aligned} & M_{\max }=5 \mathrm{kN} \cdot \mathrm{m} \\ & I=\frac{1}{12}(a)(2 a)^{3}=\frac{2}{3} a^{4} \\ & \sigma_{\text {allow }}=\frac{M_{\max } c}{I} ; \quad 12\left(10^{6}\right)=\frac{5\left(10^{3}\right)(a)}{\frac{2}{3} a^{4}} \\ & a=0.0855 \mathrm{~m}=85.5 \mathrm{~mm} \end{aligned}Use a=86 \mathrm{~mm}
I=\frac{2}{3}\left(0.086^{4}\right)=36.4672\left(10^{-6}\right) \mathrm{m}^{4}Top half of rectangle,
\begin{aligned} Q_{\max } & =\frac{0.086}{2}(0.086)(0.086) \\ & =0.318028\left(10^{-3}\right) \mathrm{m}^{3} \\ \tau_{\max } & =\frac{V_{\max } Q_{\max }}{I t}=\frac{10\left(10^{3}\right)\left[0.318028\left(10^{-3}\right)\right]}{\left[36.4672\left(10^{-6}\right)\right](0.086)} \\ & =1.01 \mathrm{MPa}<\tau_{\text {allow }}=1.5 \mathrm{MPa} (\mathrm{OK}) \end{aligned}