Establishing an Identity
Prove the identity: tan(θ+2π)=−cotθ
Formula (6) cannot be used because tan2π is not defined. Instead, proceed as follows:
tan(α+β)=1−tanαtanβtanα+tanβ (6)
tan(θ+2π)=cos(θ+2π)sin(θ+2π)=cosθcos2π−sinθsin2πsinθcos2π+cosθsin2π=(cosθ)(0)−(sinθ)(1)(sinθ)(0)+(cosθ)(1)=−sinθcosθ=−cotθ