Question 18.6: A sieve-plate column operating at atmospheric pressure is to......

A sieve-plate column operating at atmospheric pressure is to produce nearly pure methanol from an aqueous feed containing 40 mole percent methanol. The distillate product rate is 5800 kg/h. (a) For a reflux ratio of 3.5 and a plate spacing of 18 in., calculate the allowable vapor velocity and the column diameter. (b) Calculate the pressure drop per plate if each sieve tray is \frac{1}{8} in. thick with \frac{1}{4}-in. holes on a \frac{3}{4}-in. triangular spacing and a weir height of 2 in. (c) What is the froth height in the downcomer?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Physical properties of methanol: Molecular weight is 32, normal boiling point is 65°C, and the density of vapor is

\rho_{V}={\frac{32\times273}{22.4\times338}}=1.15\mathrm{~kg/m}^{3}

From Perry, Chemical Engineers’ Handbook, 6th ed., p. 3-188, the density of liquid methanol is 810\,\mathrm{kg/m^{3}} at o°c and 792 kg/m³ at 20°C. At 65°C, the estimated density {{\rho}}_{L} is 750 kg/m³. Lange’s Handbook of Chemistry, 9th ed., 1956, p. 1650, gives the surface tension of methanol at 20 and 100°C. By interpolation, at 65°C, σ = 19 dyn/cm.

(a) Vapor velocity and column diameter In Fig. 18.28 the abscissa is

\frac{L}{V}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{1/2}=\frac{3.5}{4.5}\left(\frac{1.15}{750}\right)^{1/2}=3.04\times10^{-2}

For 18-in. plate spacing,

K_{v}=0.29=u_{c}\biggl(\frac{\rho_{V}}{\rho_{V}-\rho_{L}}\biggr)^{1/2}\biggl(\frac{20}{\sigma}\biggr)^{0.2}

Allowable vapor velocity:

u_{c}=0.29\bigg(\frac{750-1.15}{1.15}\bigg)^{1/2}\bigg(\frac{19}{20}\bigg)^{0.2}

=7.32\,\mathrm{ft/s\;or\;2.23\;m/s}

Vapor flow rate:

V = D(R + 1) = 4.5D

={\frac{5800\times4.5}{3600\times1.15}}=6.30\ m^{3}/s

Cross-sectional area of column:

Bubbling area= 6.30/2.23 = 2.83 m²

If the bubbling area is 0.7 of the total column area,

Column area= 2.83/0.7 = 4.04 m²

Column diameter:

D_{c}=\left({\frac{4\times4.04}{\pi}}\right)^{1/2}=2.27\,\mathrm{m}

(b) Pressure drop The plate area of one unit of three holes on a triangular {\frac{3}{4}}\mathbf{i{n}} pitch is {{\frac{1}{2}}}\times{\frac{3}{4}}({\frac{3}{4}}\times{\sqrt{3}}/2)=9{\sqrt{3}}/64{}{\mathrm{~in}}^{2}. The hole area in this section (half a hole) is \textstyle{\frac{1}{2}}\times\pi/4\times(_{4}^{1})^{2}=\pi/128\ \mathrm{in}\,^{2}. Thus the hole area is \pi/128\times64/9\sqrt{3}=0.1008, or 10.08 percent of the bubbling area.
Vapor velocity through holes:

u_{0}=2.23/0.1008=22.1~\mathrm{m/s}

Use Eq. (18.58) for the pressure drop through the holes. From Fig. 18.27, C_{0}=0.73. Hence

h_{d}=\left(\frac{u_{0}^{2}}{C_{0}^{2}}\right)\left(\frac{\rho_{V}}{2g\rho_{L}}\right)=51.0\left(\frac{u_{0}^{2}}{C_{0}^{2}}\right)\left(\frac{\rho_{V}}{\rho_{L}}\right)              (18.85)

h_{d}={\frac{51.0\times22.1^{2}\times1.15}{0.73^{2}\times750}}=71.7\,\mathrm{mm\,methanol}

Head of liquid on plate:

Weir height: h_{\mathrm{w}}=2\times25.4=50.8\ \mathrm{mm}

Height of liquid above weir: Assume the downcomer area is 15 percent of the column area on each side of the column. From Perry, 6th ed., page 1-26, the chord length for such a segmental downcomer is 1.62 times the radius of the column, so

L_{w}=1.62\times2.23/2=1.81\ \mathrm{m}

Liquid flow rate:

q_{L}={\frac{5800\times4.5}{750\times60}}=0.58~{\mathrm{m}}^{3}/{\mathrm{min}}

From Eq. (18.60),

h_{o w}=43.4\left(\frac{q_{L}}{L_{w}}\right)^{2/3}               (18.60)

h_{ow}=43.4(0.58/1.81)^{2/3}=20.3\;\mathrm{mm}

From Eq. (18.59), with β = 0.6,

h_{l}=\beta(h_{w}+h_{o w})                    (18.59)

h_{l}=0.6(50.8+20.3)=42.7\,\mathrm{mm}

Total height of liquid [from Eq. (18.57)]:

h_t=h_d+h_l  (18.57)

h_{t}=71.7+42.7=114.4{{ \ m m}}

(c) Froth height in downcomer Use Eq. (18.62). Estimate h_{f,L}=10 mm methanol. Then

Z_c=2 \beta\left(h_w+h_{o w}\right)+h_d+h_{f, L}  (18.62)

Z_{c}=(2\times42.7)+71.7+10=167.1\,\mathrm{mm}

From Eq. (18.63),

Z={\frac{Z_{\circ}}{Φ_d}}                (18.63)

Z=167.1/0.5=334\,\mathrm{mm}\,(13.2\,\mathrm{in})

18.28
18.27
Loading more images...

Related Answered Questions

Question: 18.7

Verified Answer:

From Eq. (18.71) the F factor is F\equiv u{...