Question 3.4: A rectangular plate is supported by brackets at A and B and ......

A rectangular plate is supported by brackets at A and B and by a wire CD . Knowing that the tension in the wire is 200 N, determine the moment about A of the force exerted by the wire on point C .

3.4.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The moment {M}_{\mathrm{{A}}} about A of the force F exerted by the wire on point C is obtained by forming the vector product

{M}_{\mathrm{{A}}}={r}_{C/\mathrm{{A}}}\times\mathrm{{~F}}                                                                                  (1)

where {r}_{C/\mathrm{{A}}} is the vector drawn from A to C ,

{ r}_{C/A}={{\overrightarrow{{A C}} }}\:=\:(0.3\:{\mathrm m}){\mathrm i}\:+\:(0.08\:{\mathrm m}){\mathrm k}                                                            (2)

and F is the 200-N force directed along CD . Introducing the unit vector \mathrm{L}={\overrightarrow{{C D}} }/C D, we write

{F}=F{L}=(200\,{N})\,\frac{{{\overrightarrow{{C D}} }}}{C D}                                                                    (3)

Resolving the vector {{{\overrightarrow{{C D}} }}} into rectangular components, we have

{{\overrightarrow{{C D}} }}\,=\,-(0.3\:\mathrm{m})\mathrm i\,+\,(0.24\:\mathrm{m})\mathrm j\,-\,(0.32\:\mathrm{m})\mathrm k\qquad C D\,=\,0.50\:\mathrm{m}

Substituting into (3), we obtain

{ F}=\frac{200\,{\mathrm N}}{0.50\,{\mathrm m}}\,[-(0.3\,{\mathrm m}){\mathrm i}\,+(0.24\,{\mathrm m}){\mathrm j}\,-\,(0.32\,{\mathrm m}){\mathrm k}] \\ \\ ~~~~~~~~~~ =\;-\;(\;120\mathrm{~N~})\mathrm i\,+\,(96\mathrm{~N~}){{\mathrm{j}}}\,-\,(\;128\mathrm{~N~}){\mathrm{k}}                                                        (4)

Substituting for {r}_{C/A} and F from (2) and (4) into (1) and recalling the relations (3.7) of Sec. 3.5, we obtain

{M}_{A}\,=\,{r}_{C/A}\,\times{F}\,=\,(0.3{\mathrm i}\,+\,0.08\mathrm{k})\,\times\,(-120 {\mathrm i}\,+\,\ 96 {\mathrm j}\,-\,128 {\mathrm{k}})\\ \\ ~~~~~~~~~~~~=\,(0.3)(96){\mathrm k}+\,(0.3)(-128)(-\mathrm j)\,+ (0.08)(-120)\mathrm{j}\,+\,(0.08)(96)(-\mathrm{i})\\ \qquad \qquad {M}_{A}\,=\,-(7.68\ \mathrm{N}\cdot\ \mathrm m)\mathrm{i}_{}^{\mathrm{}}\,+\,(28.8\ \mathrm{N}\cdot\ \mathrm m)\mathrm{j}\,+\,(28.8\ \mathrm{N}\cdot\ \mathrm m)\mathrm{k}

Alternative Solution. As indicated in Sec. 3.8, the moment {M}_{A} can be expressed in the form of a determinant:

\qquad {M}_{A}=\begin{vmatrix} \mathrm i & \mathrm j & \mathrm k \\ x_{C}\,-\,x_{A} & y_{C}\,-\,y_{A} & z_{C}\,-\,z_{A} \\ \\ F_{x} & F_{y} & F_{z}\end{vmatrix}=\begin{vmatrix} \mathrm i & \mathrm j & \mathrm k \\ 0.3 & 0 & 0.08 \\ -120 & 96 & -128 \end{vmatrix}\\ \qquad \qquad {M}_{A}=-(7.68\, \mathrm {N}\cdot\mathrm {m}){\mathrm {i}}\,+\,(28.8\,\mathrm {N}\cdot\mathrm {m}){\mathrm {j}}\,+\,(28.8\,\mathrm {N}\cdot\mathrm {m})\mathrm {k}
3.4.2
3.4.3
Loading more images...

Related Answered Questions

Question: 3.6

Verified Answer:

Our computations will be simplified if we attach t...
Question: 3.3

Verified Answer:

The force is replaced by two components, one compo...
Question: 3.2

Verified Answer:

The moment {M}_{B} of the force F a...