Derive Eq. (6–17). For the specimen of Prob. 6–3, estimate the strength corresponding to 500 cycles.
S_{f}\geq S_{u t}N^{\mathrm{(\log f)/3}}\qquad1\leq N\leq10^{3} (6-17)
From S_{f}=a N^{b}
\log S_{f}=\log a+b\log N
Substituting (1,\,S_{u t})
\log S_{u t}=\log a+b\log\left(1\right)
From which a=S_{u t}
Substituting (10^{3},\,f S_{u t})\,\mathrm{and}a=S_{u t}
\log f S_{u t}=\log S_{u t}+b\log10^{3}
From which
b={\frac{1}{3}}\log f
\therefore S_{f}=S_{u t}N^{(\log f)/3}\qquad1\leq N\leq10^{3}
For 500 cycles as in Prob. 6-3
S_{f}\geq66.2(500)^{(\mathrm{log}\,0.8949)/3}=59.9\ \mathrm{kpsi}