Question 6.34: A solid round steel bar is machined to a diameter of 1.25 in......

A solid round steel bar is machined to a diameter of 1.25 in. A groove {\frac{1}{8}} in deep with a radius of {\frac{1}{8}} in is cut into the bar. The material has a mean tensile strength of 110 kpsi. A completely reversed bending moment M = 1400 lbf · in is applied. Estimate the reliability. The size factor should be based on the gross diameter. The bar rotates.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Rotation is presumed. M and S_{u t} are given as deterministic, but notice that σ is not; therefore, a reliability estimation can be made.

From Eq. (6-70):

\mathrm{S}_{e}^{\prime}=\left\{\begin{array}{l l}{{0.506\bar{S}_{u t}{L}{N}(1,0.138)~\mathrm{kpsi~or~MPa}}}&{{\bar{S}_{u t}\leq212~\mathrm{kpsi~(1460~MPa)}}}\\ {{107{LN}{(1,0.139)~kpsi}}}&{{\bar{S}_{u t}\gt 212~\mathrm{kpsi}}}\\ {{{7}40{LN}{(1,0.139)~MPa}}}&{{\bar{S}_{u t}\gt 1460~\mathrm{MPa}}}\end{array}\right.                                 (6-70)

\mathrm{S}_{e}^{\prime}=0.506(110){LN}(1,0.138)=55.7{LN}(1,0.138)\,kpsi

Table 6-10:

{k}_{a}=2.67(110)^{-0.265}{LN}(1,0.058)=0.768{LN}(1,0.058)

Based on d = 1 in, Eq. (6-20) gives

k_{b}={\left\{\begin{array}{l l}{(d/0.3)^{-0.107}=0.879d^{-0.107}}&{0.11\leq d\leq2\operatorname*{in}}\\ {0.91d^{-0.157}}&{2\lt d\leq10\ in}\\ {(d/7.62)^{-0.107}=1.24d^{-0.107}}&{2.79\leq d\leq51\ \operatorname*{mm}}\\ {1.51d^{-0.157}}&{51\lt d\leq254\operatorname*{mm}}\end{array}\right.}                             (6-20)

k_{b}=\left({\frac{1}{0.30}}\right)^{-0.107}=0.879

Conservatism is not necessary

{S}_{e}=0.768[{LN}(1,0.058)](0.879)(55.7)[{LN}(1,0.138)]

 

{\bar{S}}_{e}=37.6\,{\mathrm{kpsi}}

 

C_{S e}=(0.058^{2}+0.138^{2})^{1/2}=0.150

 

{S}_{e}=37.6{LN}(1,0.150)

Fig. A-15-14: D/d=1.25,\;r/d=0.125.\;\mathrm{Thus}\;\;K_{t}=1.70 and Eqs. (6-78), (6-79) and Table 6-15 give

\bar{K}_{f}=\frac{K_{t}}{1+\frac{2(K_{t}-1)}{K_{t}}\frac{\sqrt{a}}{\sqrt{r}}}                         (6-78)

{K}_{f}=\bar{K}_{f}{LN}\left(1,C_{K_{f}}\right)                            (6-79)

{K}_{f}=\frac{1.70{LN}(1,0.15)}{1+(2/\sqrt{0.125})[(1.70-1)/(1.70)](3/110)}=1.598{LN}(1,0.15)

 

\sigma={K}_{f}\frac{32M}{\pi d^{3}}=1.598[{LN}(1-0.15)]\left[\frac{32(1400)}{\pi(1)^{3}}\right]=22.8{LN}(1,0.15)\,kpsi

From Eq. (5-43), p. 242:

z=-\frac{\mu_{\mathrm{ln}S}-\mu_{\ln\sigma}}{\left(\hat{\sigma}_{\ln S}^{2}+\hat{\sigma}_{\ln\sigma}^{2}\right)^{1/2}}=-\frac{\ln\left(\frac{\mu_{S}}{\mu_{\sigma}}\sqrt{\frac{1+C_{\sigma}^{2}}{1+C_{s}^{2}}}\right)}{\sqrt{\ln\left[\left(1+C_{s}^{2}\right)\left(1+C_{\sigma}^{2}\right)\right]}}                                (5-43)

z=-\frac{\ln[(37.6/22.8)\sqrt{(1+0.15^{2})/(1+0.15^{2})}]}{\sqrt{\ln[(1+0.15^{2})(1+0.15^{2})]}}=-2.37

From Table A-10, p_{f}=0.008\,89

\therefore R=1-0.008\,89=0.991

Note: The correlation method uses only the mean of {S}_{u t}; its variability is already included in the 0.138. When a deterministic load, in this case M, is used in a reliability estimate, engineers state, “For a Design Load of M, the reliability is 0.991.” They are in fact referring to a Deterministic Design Load.

fig. 34
Loading more images...
Table 6–10
Parameters in Marin

Surface Condition Factor

Surface Finish \mathrm{K}_{a}=a S_{U t}^{b}\;\mathrm{LN}(\;1,\;C)
a b Coefficient Variation
kpsi Mpa
{\mathrm{Ground}}^{*} 1.34 1.58 -0.086 0.120
Machined or Cold-rolled 2.67 4.45 -0.265 0.058
Hot-rolled 14.5 58.1 -0.719 0.110
As-forged 39.8 271 -0.995 0.145
*Due to the wide scatter in ground surface data, an alternate function is {k_{a}}=0.878{{LN}}(1,0.120). Note: S_{{Ut}} in kpsi or MPa.
Table 6–15
Heywood’s Parameter

\sqrt{a} and coefficients of

variation {{C}}_{K f} for steels

Notch Type

{\sqrt{\alpha}}({\sqrt{\mathrm{in}}}),

S_{Ut} in kpsi

{\sqrt{\alpha}}({\sqrt{\mathrm{mm}}}),

S_{Ut} in Mpa

Coefficient of
Variation C_{KF}
Transverse hole 5/{{S}}_{Ut} 174/{{S}}_{Ut} 0.10
Shoulder 4/{{S}}_{Ut} 139/{{S}}_{U t} 0.11
Groove 3/{{S}}_{Ut} 104/{{S}}_{Ut} 0.15

Related Answered Questions

Question: 6.45

Verified Answer:

Peterson’s notch sensitivity q has very little sta...
Question: 6.37

Verified Answer:

For a non-rotating bar subjected to completely rev...
Question: 6.35

Verified Answer:

For completely reversed torsion, {k}_{a}[/l...