Question 4.9: A uniform pipe cover of radius r = 240 mm and mass 30 kg is ......

A uniform pipe cover of radius r = 240 mm and mass 30 kg is held in a horizontal position by the cable CD. Assuming that the bearing at B does not exert any axial thrust, determine the tension in the cable and the reactions at A and B.

4.9.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Free-Body Diagram. A free-body diagram is drawn with the coordinate axes shown. The forces acting on the free body are the weight of the cover,

{W}\,=\,-m~g{~\mathrm j}\,=\,-(30\mathrm{~k}g)(9.81\;{\mathrm{m/s}}^{2}){\mathrm{j}}\;=\;-(294\;{\mathrm{N}}){\mathrm{j}}

and reactions involving six unknowns, namely, the magnitude of the force T exerted by the cable, three force components at hinge A, and two at hinge B. The components of T are expressed in terms of the unknown magnitude T by resolving the vector \overrightarrow{DC}  into rectangular components and writing

\overrightarrow{DC} ~=~-(480\mathrm{~mm}) \mathrm i\,+\,(240\mathrm{~mm}){\mathrm j}\,-\,(160\mathrm{~mm}) {\mathrm k}\qquad{ D}C\,=\,{5}60\mathrm{~mm}

 

{T}=T{\frac{{\overrightarrow{{D C}} }}{D C}}=-{\frac{6}{7}}T{{\mathrm{i}}}+{\frac{3}{7}}T{ {\mathrm{j}}}-{\frac{{2}}{{7}}}T{\mathrm{k}}

Equilibrium Equations. We express that the forces acting on the pipe cover form a system equivalent to zero:

\Sigma{F}\,=\,0\colon\qquad\qquad A_{x}\mathrm{i}\ \,+\,A_{y}\mathrm{j}\,+\,A_{z}\mathrm{k}\,+\,{ {B}_{x}}\mathrm{i}\,+\,B_{y}\mathbf{j}\,+\, {T}\,-\,(294~{N})\mathrm{j}\,=\,0 \\ \\ \qquad\qquad (A_{x}\,+\,B_{x}\,-\,{\textstyle\frac{6}{7}}T)\mathrm{i}\;+\;({{A}}_{y}\,+\,B_{y}\,+\,{\textstyle\frac{3}{7}}T\,-\, {29}{ {4}}\,\mathrm{N})\mathrm{j}\,+\,(A_{z}\,-\,{\textstyle\frac{2}{7}}T)\mathrm{k}\,=\,0                                                      (1)

\Sigma{ M}_{B}\,=\,{\Sigma}({r}\,\times\,{F})\,=\,0: \\ \\ 2r\mathrm{k}\ \times\ (A_{x}\mathrm{i}\,+\,A_{y}\mathrm{j}\ +\,A_{z}\mathrm{k}) \\ \\ \qquad\qquad\qquad\qquad{}+\;(2\mathrm{i}+\,r\mathrm{k})\times(-{\textstyle\frac{6}{7}}{ T}\mathrm{i}\,+\,{\textstyle\frac{3}{7}}{T}\mathrm j-\,{\textstyle\frac{2}{7}}{ {T}}\mathrm{k}) \\ \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad {+\,(r\mathrm i+r\mathrm k)}\times(-294\,\mathrm{N)\mathrm j}=0 \\ \\ \qquad (-2{ A}_{y}-\textstyle{\frac{3}{7}}T+294\mathrm{~N})r\large{\mathrm i}\ +(2{ A}_{x}-\textstyle{\frac{2}{7}}T)r\large{\mathrm j} +(\textstyle{\frac{6}{7}}T-\ 294\mathrm{ ~N})r \mathrm{ k}=0                                                            (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2), we write three scalar equations, which yield

A_{x}\,=\,+49.0\ \mathrm{N}\qquad A_{y}\,=\,+73.5\ \mathrm{N}\qquad T\,=\,343\ \mathrm{N}

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain three more scalar equations. After substituting the values of T,A_{x},{\mathrm{~and~}}A_{y} into these equations, we obtain

A_{z}\,=\,+98.0\,\,{ N}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,B_{x}\,=\,\,+245\,\,{ N}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,B_{y}\,=\,\,+73.5\,\,{ N}\,

The reactions at A and B are therefore

A = +(49.0 N)i + (73.5 N)j + (98.0 N)k

B = +(245 N)i + (73.5 N)j

4.9.2
Loading more images...

Related Answered Questions

Question: 4.6

Verified Answer:

Free-Body Diagram. The joist is a three-force body...