Question 11.13: A gear-reduction unit uses the countershaft depicted in the ......

A gear-reduction unit uses the countershaft depicted in the figure. Find the two bearing reactions. The bearings are to be angular-contact ball bearings, having a desired life of 40 kh when used at 200 rev/min. Use 1.2 for the application factor and a reliability goal for the bearing pair of 0.95. Select the bearings from Table 11–2.

Manufacturer Rating Life, revolutions Weibull Parameters Rating Lives
{x}_{0} \theta b
1 90(10^{6}) 0 4.48 1.5
2 1(10^{6}) 0.02 4.459 1.483
Tables 11–2 and 11–3 are based on manufacturer 2.
Table 11-2
Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings
Bore, OD, Width, Fillet Radius, Shoulder Load Ratings, kN
Diameter, mm Deep Groove Angular Contact
mm mm mm mm d_{S} d_{H} C_{10} C_{0} C_{10} C_{0}
10 30 9 0.6 12.5 27 5.07 2.24 4.94 2.12
12 32 10 0.6 14.5 28 6.89 3.10 7.02 3.05
15 35 11 0.6 17.5 31 7.80 3.55 8.06 3.65
17 40 12 0.6 19.5 34 9.56 4.50 9.95 4.75
20 47 14 1.0 25 41 12.7 6.20 13.3 6.55
25 52 15 1.0 30 47 14.0 6.95 14.8 7.65
30 62 16 1.0 35 55 19.5 10.0 20.3 11.0
35 72 17 1.0 41 65 25.5 13.7 27.0 15.0
40 80 18 1.0 46 72 30.7 16.6 31.9 18.6
45 85 19 1.0 52 77 33.2 18.6 35.8 21.2
50 90 20 1.0 56 82 35.1 19.6 37.7 22.8
55 100 21 1.5 63 90 43.6 25.0 46.2 28.5
60 110 22 1.5 70 99 47.5 28.0 55.9 35.5
65 120 23 1.5 74 109 55.9 34.0 63.7 41.5
70 125 24 1.5 79 114 61.8 37.5 68.9 45.5
75 130 25 1.5 86 119 66.3 40.5 71.5 49.0
80 140 26 2.0 93 127 70.2 45.0 80.6 55.0
85 150 28 2.0 99 136 83.2 53.0 90.4 63.0
90 160 30 2.0 104 146 95.6 62.0 106 73.5
95 170 32 2.0 110 156 108 69.5 121 85.0
pr. 11.13
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{array}{l}{{R=\sqrt{0.95}=0.975}}\\ {{T=240(12)(\cos20^{\circ})=2706\ \mathrm{lbf}\cdot\mathrm{in}}}\\ {{F=\frac{2706}{6\cos25^{\circ}}=498\ \mathrm{lbf}}}\end{array}

In xy-plane:

\sum M_{O}=-82.1(16)-210(30)+42{R_{C}^{{{y}}}}=0

 

\begin{array}{l}{{R_{C}^{y}=181\,{\mathrm{lbf}}}}\\ {{R_{O}^{y}=82+210-181=111\,{\mathrm{lbf}}}}\end{array}

In xz-plane:

\sum M_{O}=226(16)-452(30)-42R_{c}^{z}=0

 

\begin{array}{l}{{R_{C}^{z}=-237\mathrm{~lbf}}}\\ {{R_{O}^{z}=226-451+237=12\mathrm{~lbf}}}\\ {{R_{O}=(111^{2}+12^{2})^{1/2}=112\mathrm{~lbf}}}\\ {{R_{C}=(181^{2}+237^{2})^{1/2}=298\ \mathrm{lbf}}}\\ {{F_{e O}=1.2(112)=134.4\ \mathrm{~lbf~}}}\\{{F_{eC}=1.2(298)=357.6\,\mathrm{lbf}}}\end{array}

 

x_{D}={\frac{40\,000(200)(60)}{10^{6}}}=480

 

(C_{10})_{O}=134.4\left\{{\frac{480}{0.02+4.439[\mathrm{ln}(1/0.975)]^{1/1.483}}}\right\}^{1/3}=1438\ lbf\quad\mathrm{or}\quad6.398\ \mathrm{kN}

 

(C_{10})_{C}=357.6\left\{{\frac{480}{0.02+4.439[\mathrm{ln}(1/0.975)]^{1/1.483}}}\right\}^{1/3}=3825\ \mathrm{lbf}\quad\mathrm{or}\quad17.02\mathrm{kN}

 

Bearing at O: Choose a deep-groove 02-12 mm.

Bearing at C: Choose a deep-groove 02-30 mm..

There may be an advantage to the identical 02-30 mm bearings in a gear-reduction unit.

fig. 13
Loading more images...

Related Answered Questions