The same 02-30 angular-contact ball bearing as in Prob. 11–18 is to be subjected to a two-step loading cycle of 4 min with a loading of 18 kN, and one of 6 min with a loading of 30 kN. This cycle is to be repeated until failure. Estimate the total life in revolutions, hours, and loading cycles.
Manufacturer | Rating Life, revolutions | Weibull Parameters Rating Lives | ||
{x}_{0} | \theta | b | ||
1 | 90(10^{6}) | 0 | 4.48 | 1.5 |
2 | 1(10^{6}) | 0.02 | 4.459 | 1.483 |
Tables 11–2 and 11–3 are based on manufacturer 2. |
Total life in revolutions
Let:
l = total turns
f_{1} = fraction of turns at F_{1}
f_{2} = fraction of turns at F_{2}
From the solution of Prob. 11-18, L_{1}=1.434(10^{6})\;\mathrm{rev\;and}\;L_{2}=0.310(10^{6})\;\mathrm{rev}.
Palmgren-Miner rule:
{\frac{l_{1}}{L_{1}}}+{\frac{l_{2}}{L_{2}}}={\frac{f_{1}l}{L_{1}}}+{\frac{f_{2}l}{L_{2}}}=1from which
l=\frac{1}{f_{1}/L_{1}+f_{2}/L_{2}}l=\frac{1}{\{0.40/[1.434(10^{6})]\}+\{0.60/[0.310(10^{6})]\}}=451\,585\,rev
Total life in loading cycles
4 min at 2000 rev/min = 8000 rev
{\frac{6\ \mathrm{min}}{10\ \mathrm{min}/\mathrm{cycle}}}\ a t\,2000\ \mathrm{rev/min}={\frac{12\,000\ \mathrm{rev}}{20\,000\ \mathrm{rev/cycle}}}{\frac{451\,585\,\mathrm{rev}}{20\,000\,\mathrm{rev/cycle}}}=22.58\,\mathrm{cycles}
Total life in hours
\left(10{\frac{\mathrm{min}}{\mathrm{cycle}}}\right)\left({\frac{22.58\,\mathrm{cycles}}{60\,\mathrm{min}/\mathrm{h}}}\right)=3.76\,\mathrm{h}