A force of 800 N acts on a bracket as shown. Determine the moment of the force about B.
STRATEGY: You can resolve both the force and the position vector from B to A into rectangular components and then use a vector approach to complete the solution.
MODELING and ANALYSIS: Obtain the moment \mathbf{M}_B of the force F about B by forming the vector product
\mathbf{M}_B=\mathbf{r}_{A / B} \times \mathbf{F}
where \mathbf{r}_{A / B} is the vector drawn from B to A (Fig. 1). Resolving \mathbf{r}_{A / B} and F into rectangular components, you have
\begin{aligned}\mathbf{r}_{A / B} & =-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j} \\\mathbf{F} & =(800 \mathrm{~N}) \cos 60^{\circ} \mathbf{i}+(800 \mathrm{~N}) \sin 60^{\circ} \mathbf{j} \\& =(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}\end{aligned}
Recalling the relations in Eq. (3.7) for the cross products of unit vectors (Sec. 3.5), you obtain
\begin{array}{l}\mathbf{i} \times \mathbf{i}=\mathbf{0} \quad \mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} \\\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{j}=\mathbf{0} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \\\mathbf{i} \times \mathbf{k}=-\mathbf{j} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{k}=\mathbf{0} \\\end{array} (3.7)
\begin{aligned}\mathbf{M}_B & =\mathbf{r}_{A/B} \times \mathbf{F}=[-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j}] \times[(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}] \\& =-(138.6 \mathrm{~N} \cdot \mathrm{m}) \mathbf{k}-(64.0 \mathrm{~N} \cdot \mathrm{m}) \mathbf{k}\end{aligned}
=-(202.6 \mathrm{~N} \cdot \mathrm{m})\mathbf{k} \mathbf{M}_B=203 \mathrm{~N} \cdot \mathrm{m} \circlearrowright
The moment \mathbf{M}_B is a vector perpendicular to the plane of the figure and pointing into the page.
REFLECT and THINK: We can also use a scalar approach to solve this problem using the components for the force F and the position vector \mathbf{r}_{A / B}.
Following the right-hand rule for assigning signs, we have
+ \circlearrowleft \mathbf{M}_B = \sum{\mathbf{M}_B }= \sum{Fd} = -(400 N)(0.16 m) – (693 N)(0.2 m)= -202.6 \mathrm{~N} \cdot \mathrm{m}
\\\mathbf{M}_B = 203 \mathrm{~N} \cdot \mathrm{m} \circlearrowright