For the section shown, the moments of inertia with respect to the x and y axes have been computed and are known to be
I_x=10.38 ~\mathrm{in}^4 \quad I_y=6.97 ~\mathrm{in}^4
Determine (a) the orientation of the principal axes of the section about O, (b) the values of the principal moments of inertia of the section about O.
STRATEGY: The first step is to compute the product of inertia with respect to the x and y axes, treating the section as a composite area of three rectangles. Then you can use Eq. (9.25) to find the principal axes and Eq. (9.27) to find the principal moments of inertia.
\tan 2 \theta_m=\frac{2 I_{x y}}{I_x-I_y} (9.25)
I_{\max , \min }=\frac{I_x+I_y}{2} \pm \sqrt{\left(\frac{I_x-I_y}{2}\right)^2+I_{x y}^2} (9.27)
MODELING and ANALYSIS: Divide the area into three rectangles as shown (Fig. 1). Note that the product of inertia I_{x^{\prime} y^{\prime}} with respect to centroidal axes parallel to the x and y axes is zero for each rectangle. Thus, using the parallel-axis theorem
I_{x y}=I_{x^{\prime} y^{\prime}}+\bar{x} \bar{y} A
you find that I_{x y} \text { reduces to } \bar{x} \bar{y} A for each rectangle.
I_{x y}=\Sigma \bar{x} \bar{y} A=-6.56 ~\mathrm{in}^4
a. Principal Axes. Since you know the magnitudes of I_x, I_y, \text { and } I_{x y}, you can use Eq. (9.25) to determine the values of \theta_m (Fig. 2):
\tan 2 \theta_m=-\frac{2 I_{x y}}{I_x-I_y}=-\frac{2(-6.56)}{10.38-6.97}=+3.85
2 \theta_m=75.4^{\circ} \text { and } 255.4^{\circ}
\theta_m=37.7^{\circ} \text { and } \theta_m=127.7^{\circ}
b. Principal Moments of Inertia. Using Eq. (9.27), you have
\begin{aligned}I_{\max , \min } & =\frac{I_x+I_y}{2} \pm \sqrt{\left(\frac{I_x-I_y}{2}\right)^2+I_{x y}^2} \\& =\frac{10.38+6.97}{2} \pm \sqrt{\left(\frac{10.38-6.97}{2}\right)^2+(-6.56)^2}\end{aligned}
I_{\max }=15.45 ~\mathrm{in}^4 \quad I_{\min }=1.897 ~\mathrm{in}^4
REFLECT and THINK: Note that the elements of the area of the section are more closely distributed about the b axis than about the a axis. Therefore, you can conclude that I_a=I_{\max }=15.45 ~\mathrm{in}^4 \text { and } I_b=I_{\min }= 1.897 ~\mathrm{in}^4. You can verify this conclusion by substituting θ = 37.7° into Eqs. (9.18) and (9.19).
I_{x^{\prime}}=\frac{I_x+I_y}{2}+\frac{I_x-I_y}{2} \cos 2 \theta-I_{x y} \sin 2 \theta (9.18)
I_{y^{\prime}}=\frac{I_x+I_y}{2}-\frac{I_x-I_y}{2} \cos 2 \theta+I_{x y} \sin 2 \theta (9.19)
Rectangle | \text { Area, in }{ }^2 | \bar{x} \text {, in. } | \bar{y} \text {, in. } | \bar{x} \bar{y} A, \mathrm{in}^4 |
I | 1.5 | -1.25 | +1.75 | -3.28 |
II | 1.5 | 0 | 0 | 0 |
III | 1.5 | +1.25 | -1.75 | -3.28 |
\Sigma \bar{x} \bar{y} A=-6.56 |