Question 2.Q.63: In the circuit of Fig. 1, compute I x . Demonstrate the r......

In the circuit of Fig. 1, compute \overline{I}_ x . Demonstrate the reciprocity theorem by interchanging the positions of the source and \overline{I}_ x.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case i : To solve \overline{I}_ x in the given circuit Let us assume three mesh currents \overline{I}_{1},\overline{I}_{2} and \overline{I}_{3} as shown in Fig. 2. Now, the response, \overline{I}_{x}=\overline{I}_{3}.

With reference to Fig. 2, the mesh basis matrix equation is,

\begin{bmatrix} {8 + j4}&{{-j4}}&0\\ {{-j4}}&{{8 + j4 − j8}}&-(-j8) \\ 0 &-(-j8)& 3-j8\end{bmatrix} \begin{bmatrix}\overline{I} _{1} \\ \overline{I}_{2} \\ \overline{I}_{3}\end{bmatrix} =\begin{bmatrix} 50 \angle 30^\circ \\ 0 \\ 0\end{bmatrix}

Here,50\angle30^{\circ}=50\cos30^{\circ}+j50\sin30^{\circ}=43.3013+j25V

\begin{bmatrix} {8 + j4}&{{-j4}}&0\\ {{-j4}}&{{8 – j4 }}& j8 \\ 0 & j8 & 3-j8\end{bmatrix} \begin{bmatrix}\overline{I} _{1} \\ \overline{I}_{2} \\ \overline{I}_{3}\end{bmatrix} =\begin{bmatrix} 43.3013+j25 \\ 0 \\ 0\end{bmatrix}            ………….(1)

\Delta=\begin{vmatrix}{{8 + j4}}&{{-j4}} & 0\\ {{-j4}}&8 – j4&j8 \\0&j8&3-j8 \end{vmatrix} =(8+\mathrm{j}4)\times\bigl[(8-\mathrm{j}4)\times(3-\mathrm{j}8)-(\mathrm{j}8)^{2}\bigr]-(-\mathrm{j}4)\times\bigl[-\mathrm{j}4\times(3-\mathrm{j}8)-0\bigr]+0=752-j384+48-j128=800-j512

\Delta_3=\begin{vmatrix}{{8 + j4}}&{{-j4}} & 43.3013+j25\\ {{-j4}}&8 – j4&0 \\0 & j8 & 0 \end{vmatrix} =0-0+(43.3013+j25)\times\lbrack-\mathrm{j}4\times\mathrm{j}8-0\rbrack=1385.6416 + j 800

∴ The response {\bar{I}}_{x}\;=\;{\bar{I}}_{3}\;=\;{\frac{\Delta_{3}}{\Delta}}=\frac{1385.6416+j800}{800-j512}

=\;0.7747\;+j1.4958\;A=\;1.6845∠62.6^{\circ}\;A

Case ii : To demonstrate the reciprocity theorem by interchanging the positions of source and response

Let us interchange the position of source and response as shown in Fig. 3. Let us assume mesh currents as shown in Fig. 3.

Now, the response, {\overline{I}}_{{x}}\;=\;{{{\overline{I}}}}_{a}\;.

With reference to Fig. 3, the mesh basis matrix equation is,

\begin{bmatrix} {8 + j4}&{{-j4}}&0\\ {{-j4}}&{{8 + j4 − j8}}&-(-j8) \\ 0 &-(-j8)& 3-j8\end{bmatrix} \begin{bmatrix}\overline{I} _{a} \\ \overline{I}_{b} \\ \overline{I}_{c}\end{bmatrix} =\begin{bmatrix} 0\\ 0 \\ 50 \angle 30^\circ \end{bmatrix}

\begin{bmatrix} {8 + j4}&{{-j4}}&0\\ {{-j4}}&{{8 – j4}}&j8 \\ 0 &j8& 3-j8\end{bmatrix} \begin{bmatrix}\overline{I} _{a} \\ \overline{I}_{b} \\ \overline{I}_{c}\end{bmatrix} =\begin{bmatrix} 0\\ 0 \\ 43. 3013+j25 \end{bmatrix}           ……………(2)

On comparing equations (1) and (2), we can say that the value of ∆ remains the same in both the cases.

∴ ∆ = 800 − j512

\Delta_a=\begin{vmatrix}{0}&{{-j4}} & 0\\ {{0}}&8 – j4&j8 \\43.3013 +j25&j8&3-j8 \end{vmatrix}= 0-(-\mathrm{j}4)\times\bigl\lbrack0-(43.3013+\mathrm{i}25)\times\bigr\rbrack8\bigr\rbrack+0=\,1385.6416+j800

∴ The response,{\bar{I}}_{x}\;=\;{\bar{I}}_{a}\;=\;{\frac{\Delta_{a}}{\Delta}}=\frac{1385.6416+j800}{800-j512}

=\;0.7747\;+j1.4958\;A=\;1.6845∠62.6^{\circ}\;A

It is observed that the response remains the same after interchanging the positions of source and response, which demonstrates the validity of the reciprocity theorem.

2
3

Related Answered Questions

Question: 2.65

Verified Answer:

The given circuit can be redrawn as shown in Fig. ...
Question: 2.66

Verified Answer:

In the given circuit the parallel branches with 8 ...
Question: 2.Q.50

Verified Answer:

The circuit can be redrawn as shown in Fig. Q2.50....
Question: 2.Q.49

Verified Answer:

The circuit can be redrawn as shown in Fig. Q2.49....
Question: 2.Q.48

Verified Answer:

\overline{{{Z}}}_{\mathrm{eq}}=\left(\frac{...