Given the state vector,
\begin{aligned}& r =-6045 \hat{ I }-3490 \hat{ J}+2500 \hat{ K }( km ) \\& v =-3.457 \hat{ I }+6.618 \hat{ J }+2.533 \hat{ K }( km / s )\end{aligned}find the orbital elements h, i, Ω, e, ω, and θ using Algorithm 4.2.
Step 1:
r=\sqrt{ r \cdot r }=\sqrt{(-6045)^2+(-3490)^2+2500^2}=7414 km (a)
Step 2:
v=\sqrt{ v \cdot v }=\sqrt{(-3.457)^2+6.618^2+2.533^2}=7.884 km / s (b)
Step 3:
(c)
Since v_r > 0, the satellite is flying away from perigee.
Step 4:
h = r \times V =\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-6045 & -3490 & 2500 \\-3.457 & 6.618 & 2.533\end{array}\right|=-25,380 \hat{ I }+6670 \hat{ J }-52,070 \hat{ K }\left( km ^2 / s \right) (d)
Step 5:
h=\sqrt{ h \cdot h }=\sqrt{(-25,380)^2+6670^2+(-52,070)^2}=\boxed{58,310 km ^2 / s} (e)
Step 6:
i=\cos ^{-1} \cfrac{h_Z}{h}=\cos ^{-1}\left(\cfrac{-52,070}{58,310}\right)=\boxed{153.2^{\circ}} (f)
Since i is greater than 90^{\circ}, this is a retrograde orbit.
Step 7:
N =\hat{ K } \times h =\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\0 & 0 & 1 \\-25,380 & 6670 & -52,070\end{array}\right|=-6670 \hat{ I }-25,380 \hat{ J }\left( km ^2 / s \right) (g)
Step 8:
N=\sqrt{ N \cdot N }=\sqrt{(-6670)^2+(-25,380)^2}=26,250 km ^2 / s (h)
Step 9:
Q=\cos ^{-1} \cfrac{N_X}{N}=\cos ^{-1}\left(\cfrac{-6670}{26,250}\right)=104.7^{\circ} \text { or } 255.3^{\circ}From Eqn (g) we know that N_Y < 0; therefore, Ω must lie in the third quadrant,
\boxed{Q=255.3^{\circ}} (i)
Step 10:
Step 11:
e=\sqrt{ e \cdot e}=\sqrt{(-0.09160)^2+(-0.1422)^2+(0.02644)^2}= \boxed{0.1712} (k)
Clearly, the orbit is an ellipse.
Step 12:
ω lies in the first quadrant if e_Z > 0, which is true in this case, as we see from Eqn (j). Therefore,
\boxed{\omega=20.07^{\circ}} (l)
Step 13:
From Eqn (c) we know that v_r > 0, which means 0 \leq \theta<180^{\circ}. Therefore,
\boxed{\theta=28.45^{\circ}}Having found the orbital elements, we can go on to compute other parameters. The perigee and apogee radii are
From these it follows that the semimajor axis of the ellipse is
a=\cfrac{1}{2}\left(r_{ p }+r_{ a }\right)=8788 kmThis leads to the period,
T=\cfrac{2 \pi}{\sqrt{\mu}} a^{\frac{3}{2}}=2.278 hThe orbit is illustrated in Figure 4.8.