By using Eqs. (2.23) and (2.34), show that
U.(V\times W)= \left|\begin{matrix} U_x & U_{y} & U_z \\ V_x & V_y & V_z \\ W_x & W_y & W_z \end{matrix} \right|One strategy is to expand the determinant in terms of its components, take the dot product, and then collapse the expansion. Eq. (2.23) is an expansion of the dot product: Eq. (2.23): U · V = U_X V_X + U_Y V_Y + U_Z V_Z. Eq. (2.34) is the determinant representation of the cross product:
\text { Eq. (2.34) } U \times V=\left|\begin{array}{ccc} i & j & k \\U_X & U_Y & U_Z \\V_X & V_Y & V_Z\end{array}\right|For notational convenience, write P = (U × V). Expand the determinant about its first row:
P = i \left|\begin{array}{ll}U_Y & U_Z \\V_Y & V_Z\end{array}\right|- j \left|\begin{array}{ll}U_X & U_Z \\V_X & V_Z\end{array}\right|+ k \left|\begin{array}{cc}U_X & U_Z \\V_X & V_Z\end{array}\right|Since the two-by-two determinants are scalars, this can be written in the form: P = iP_X + jP_Y + kP_Z where the scalars P_X,~P_Y,~and~P_Z are the two-by-two determinants. Apply Eq. (2.23) to the dot product of a vector Q with P. Thus Q · P = Q_X P_X + Q_Y P_Y + Q_Z P_Z. Substitute P_X,~P_Y,~and~P_Z into this dot product
Q \cdot P =Q_X\left|\begin{array}{ll}U_Y & U_Z \\V_Y & V_Z\end{array}\right|-Q_Y\left|\begin{array}{ll}U_X & U_Z \\V_X & V_Z\end{array}\right|+Q_z\left|\begin{array}{cc}U_X & U_Z \\V_X & V_Z\end{array}\right|But this expression can be collapsed into a three-by-three determinant directly, thus: