An earth satellite has the following orbital parameters:
Calculate the right ascension (longitude east of x^{\prime}) and declination (latitude) relative to the rotating earth 45 min later.
First, we compute the semimajor axis a, eccentricity e, the angular momentum h, the semimajor axis a, and the period T. For the semimajor axis, we recall that
a=\cfrac{r_{ p }+r_{ a }}{2}=\cfrac{6700+10,000}{2}=8350 kmFrom Eqn (2.84) we get
e=\cfrac{r_{ a }-r_{ p }}{r_{ a }+r_{ p }}=\cfrac{10,000-6700}{10,000+6700}=0.19760Equation (2.50) yields
r_p=\cfrac{h^2}{\mu} \cfrac{1}{1+e} (2.50)
h=\sqrt{\mu r_{ p }(1+e)}=\sqrt{398,600 \times 6700 \times(1+0.19760)}=56,554 km ^2 / sFinally, we obtain the period from Eqn (2.83),
T=\cfrac{2 \pi}{\sqrt{\mu}} a^{3 / 2}=\cfrac{2 \pi}{\sqrt{398,600}} 8350^{3 / 2}=7593.5 sNow we can proceed with Algorithm 4.6.
Step 1:
Step 2:
a.
b.
M=E-e \sin E=-2.1059-0.19760 \sin (-2.1059)=-1.9360 radc.
t_0=\cfrac{M}{2 \pi} T=\cfrac{-1.9360}{2 \pi} \cdot 7593.5=-2339.7 s \quad(2339.7 s \text { until perigee })Step 3: t=t_0+45 \text{min} =-2339.7+45 \times 60=360.33 s \quad(360.33 s \text { after perigee })
a.
b.
\begin{aligned}& \Omega=\Omega_0+\dot{\Omega} \Delta t=270^{\circ}+\left(-2.3394 \times 10^{-5 \%} / s \right)(2700 s )=269.94 \\& \omega=\omega_0+\dot{\omega} \Delta t=45^{\circ}+\left(5.8484 \times 10^{-6} / s \right)(2700 s )=45.016^{\circ}\end{aligned}c.
\{ r \}_X \stackrel{\text { Algorithm } 4.5}{\widehat{=}}\left\{\begin{array}{c}3212.6 \\-2250.5 \\5568.6\end{array}\right\}( km )d.
e.
r =2710.3 I ^{\prime}-2835.4 \hat{\jmath}^{\prime}+5568.6 \hat{ K }^{\prime}\overbrace{\Rightarrow }^{\text{Algorithm 4:1}} \boxed{\alpha=313.7^{\circ} \quad \delta=54.84^{\circ}}