Question 26.17: The I-section beam shown in Fig. P.26.17 carries bending mom......

The I-section beam shown in Fig. P.26.17 carries bending moments M_{X} = 0.2 kNm and M_{Y} = 0.2 kNm. If for the flanges E_{x} = 54,100 N/mm² and for the web E_{x} = 17,700 N/mm², determine the distribution of axial force intensity.

p.26.17
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The modified section properties are, from Eqs (26.67),

I_{X X}^{\prime}=\int_{A}E_{Z,i}Y^{2}\;\mathrm{d}A,\quad I_{Y Y}^{\prime}=\int_{A}E_{Z,i}X^{2}\;\mathrm{d}A,\quad I_{X Y}^{\prime}=\int_{A}E_{Z,i}X Y\;\mathrm{d}A.             (26.67)

I_{X X}^{\prime}=2\times54100\times100\times1\times50^{2}+17700\times100^{3}/12=2.8\times10^{10}  \mathrm{Nmm^{2}}

 

I_{Y Y}^{\prime}=2\times54100\times1\times100^{3}/12=0.9\times10^{10}  \mathrm{Nmm^{2}}

 

I_{X Y}^{\prime}=0 since the section is doubly symmetrical about the X and Y axes.

Eq. (26.68) then reduces to

\sigma_{Z}=E_{Z,i}\left[\left({\frac{M_{Y}I_{X X}^{\prime}-M_{X}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{X Y}^{2}}}\right)X+\left({\frac{M_{X}I_{Y Y}^{\prime}-M_{Y}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{~X Y}^{2}}}\right)Y\right]            (26.68)

\sigma_{Z}=E_{Z,i}\left({\frac{M_{Y}X}{I_{\mathrm{YY}}^{\prime}}}+{\frac{M_{X}Y}{I_{XX}^{\prime}}}\right)           (i)

Substituting in Eq. (i) for M_{Y},\,I_{Y Y}^{\prime} etc. and noting that E_{\mathrm{Z},i}=54100\mathrm{~N/mm^{2},}

\sigma_{Z}=1.2X+0.39Y          (ii)

Then, at 1,

\sigma_{Z,1}=1.2\,(-50)+0.39\,(50)=-40.5\,\mathrm{N/mm^{2}}

and at 2,

\sigma_{Z,2}=1.2\left(0\right)+0.39\left(50\right)=19.5\,\mathrm{N/mm^{2}}

 

\begin{array}{l l}{{\mathrm{~At~3~}}}&{{\mathrm{\sigma}_{Z3}=1.2\ (50)+0.39\ (50)=79.5\mathrm{~N/mm^{2}~}}}\\ {{\mathrm{~At~4~}}}&{{\mathrm{\sigma}_{Z.4}=1.2\ (-50)+0.39\ (-50)=-79.5\mathrm{~ N/mm^{2}~}}}\end{array}

 

\begin{array}{c c c}{{\mathrm{~At~}5\ \ \ \ \sigma_{Z5}=1.2\ (0)+0.39\ (-50)=\ -\ 19.5\ \mathrm{N/mm^{2}~}}}\\ {{\mathrm{~At~}6\ \ \ \ \ \ \sigma_{Z5}=1.2\ (50)+0.39\ (-50)=40.5\ \mathrm{N/mm^{2}~}}}\end{array}

The corresponding axial force intensities are

\begin{array}{l}{{N_{1}=-40.5\times1=-40.5\,\mathrm{N/mm=-N_{6}}}}\\ {{N_{2}=19.5\times1=19.5\,\mathrm{N/mm=-N_{5}}}}\\ {{N_{3}=79.5\,\times1=79.5\,\mathrm{N/mm=-N_{4}}}}\end{array}

For the web the values of M_{Y},I_{Y Y}^{\prime} etc. will be the same as those for the flanges but E_{Z,i}=17700\,\mathrm{N/mm^{2}}.

Eq. (i) then becomes

\sigma_{Z}(\mathrm{web})=0.39X+0.13Y          (iii)

Then

\sigma_{Z,2}=0.13\,(50)=6.5\,\mathrm{N/mm^{2}}=-\sigma_{Z,5}

The corresponding axial force intensities are then

N_{2}=6.5\times0.5=3.25\,\mathrm{N/mm}=-N_{5}

Related Answered Questions