Question 3.24: In the circuit of Fig. 1, the switch remains in position-1 f......

In the circuit of Fig. 1, the switch remains in position-1 for a long time. At t = 0, the switch is moved from position-1 to position-2. Find an expression for the current through the RC circuit.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case i : Switch in position-1
In position-1, the circuit has attained a steady state. Hence, we can perform steady state analysis. The steady state of the RC circuit with switch in position-1 is shown in Fig. 2.

The standard form of sinusoidal source is, Emsin(ωt±θ).E_m sin (ωt ± \theta).

Here, Emsin(ωt±θ)=100sin(200t+45o)VE_m sin (ωt ± \theta)=100 sin(200t + 45^o ) V

Em=100V,ω=200rad/s,ϕ=45\therefore E_m=100 V , \omega=200 rad / s , \phi=45^{\circ}

Eˉm=10045V\bar{E}_m=100 \angle 45^{\circ} V

∴ Rms value of voltage E=Em2=100245V{{E}}={\frac{{E}_{\mathrm{m}}}{\sqrt{2}}}={\frac{100}{\sqrt{2}}}\angle45^{\circ}V

Let V0\overline{V}_0 be the voltage across the capacitor in steady state. By voltage division rule,

V0=100245×j25050j250\overline{{{V}}}_{0}\,=\,\frac{100}{\sqrt{2}}\angle45^{\circ}\times\frac{-j250}{50-j250}

=100245×25090254.95178.7=\,{\frac{100}{\sqrt{2}}}\angle45^{\circ}\times{\frac{250\angle-90^{\circ}}{254.951\angle-78.7^{\circ}}}

=69.337533.7V\,=\,69.3375\angle 33.7^{\circ}V

Let,V0  =  V0  =  69.3375V{V}_{0}\;=\;\left|{\overline{{{V}}}}_{0}\right|\;=\;69.3375\,V

This steady state voltage V0=69.3375 VV_0 = 69.3375 \ V will be the initial voltage when the switch is moved from position-1 to position-2.

Case ii : Switch in position-2

When the switch is changed from position-1 to position-2, a steady voltage of V0V_0 (and hence a charge of Q0Q_0 ) exists across the capacitance. Since the capacitance does not allow a sudden change in voltage, this steady voltage V0V_0 will be the initial voltage when the switch is closed to position-2.

vC(0)=vC(0+)=V0=69.3375Vv_{\mathrm{{C}}}(0^{-})=v_{\mathrm{{C}}}(0^{+})=V_{0}=69.3375\,V

The time domain and s-domain RC circuits with the switch in position-2 are shown in Figs 3 and 4, respectively.

Let, i(t) be the current through the RC circuit, when the switch is closed to position-2 at t = 0.
Let, I(s)=L{i(t)}I(\mathbf{s})=\mathcal{L}\{i(t)\}

With reference to Fig. 4, we can write,

I(s)=69.3375s50+50+120×106s{I}(\mathrm{s})\,=\,\frac{\frac{69.3375}{s} }{50+50+\frac{1}{20\times 10^{-6}s}}

=  69.3375s×1100+120×106s=\;{\frac{69.3375}{s}}\times{\frac{1}{100+{\frac{1}{20\times10^{-6}\mathrm{s}}}}}

=  69.3375100s+120×106=69.3375100(s+1100×20×106)=0.693375(s+500)=\;\frac{69.3375}{100s+\frac{1}{20\times10^{-6}}}=\frac{69.3375}{100\left(s+\frac{1}{100\times20\times10^{-6}}\right)}=\frac{0.693375}{(s+500)}

I(s)=0.693375s+500I(s)\,=\,{\frac{0.693375}{s+500}}

On taking the inverse Laplace transform of I (s), we get,

i(t)=0.693375e500tAi({t})=0.693375\,\mathrm{e}^{-500{\mathrm{t}}}A

L{eat}=1s + a\mathcal{L}{{{\{\mathrm{e}^{-\mathrm{at}}\}}}}\:=\:\frac{1}{\mathrm{s~+~a}}

 

2
3.4

Related Answered Questions