Question 3.12.2: Solve x' - 4x + y" = t² x' + x + y' = 0. (9)...

Solve x4x+y=t2\quad x^{\prime}-4 x+y^{\prime \prime}=t^{2}

 x+x+y=0\quad  x^{\prime}+x+y^{\prime}=0    (9)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First we write the system in differential operator notation:

(D4)x+D2y=t2(D+1)x+Dy=0. \begin{aligned} (D-4) x+D^{2} y & =t^{2} \\ (D+1) x+D y & =0. \end{aligned}     (10)

Then, by eliminating xx, we obtain

[(D+1)D2(D4)D]y=(D+1)t2(D4)0\left[(D+1) D^{2}-(D-4) D\right] y=(D+1) t^{2}-(D-4) 0

or                        (D3+4D)y=t2+2t.\left(D^{3}+4 D\right) y=t^{2}+2 t .

Since the roots of the auxiliary equation m(m2+4)=0m\left(m^{2}+4\right)=0 are m1=0,m2=2im_{1}=0, m_{2}=2 i, and m3=2im_{3}=-2 i, the complementary function is

yc=c1+c2cos2t+c3sin2t.y_{c}=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t.

To determine the particular solution ypy_{p} we use undetermined coefficients by assuming yp=At3+Bt2+Cty_{p}=A t^{3}+B t^{2}+C t. Therefore

 yp=3At2+2Bt+C,yp=6At+2B,yp=6Ayp+4yp=12At2+8Bt+6A+4C=t2+2t. \ y_{p}^{\prime}=3 A t^{2}+2 B t+C, \quad y_{p}^{\prime \prime}=6 A t+2 B, \quad y_{p}^{\prime \prime \prime}=6 A \\ y_{p}^{\prime \prime \prime}+4 y_{p}^{\prime}=12 A t^{2}+8 B t+6 A+4 C=t^{2}+2 t.

The last equality implies 12A=1,8B=2,6A+4C=012 A=1,8 B=2,6 A+4 C=0, and hence A=112,B=14,C=18A=\frac{1}{12}, B=\frac{1}{4}, C=-\frac{1}{8}. Thus

y=yc+yp=c1+c2cos2t+c3sin2t+112t3+14t218t.y=y_{c}+y_{p}=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t+\frac{1}{12} t^{3}+\frac{1}{4} t^{2}-\frac{1}{8} t.   (11)

Eliminating yy from the system (9) leads to

[(D4)D(D+1)]x=t2 or (D2+4)x=t2.[(D-4)-D(D+1)] x=t^{2} \quad \text { or } \quad\left(D^{2}+4\right) x=-t^{2}.

It should be obvious that

xc=c4cos2t+c5sin2tx_{c}=c_{4} \cos 2 t+c_{5} \sin 2 t

and that undetermined coefficients can be applied to obtain a particular solution of the form xp=At2+Bt+Cx_{p}=A t^{2}+B t+C. In this case the usual differentiations and algebra yield xp=14t2+18x_{p}=-\frac{1}{4} t^{2}+\frac{1}{8}, and so

x=xc+xp=c4cos2t+c5sin2t14t2+18x=x_{c}+x_{p}=c_{4} \cos 2 t+c_{5} \sin 2 t-\frac{1}{4} t^{2}+\frac{1}{8}.    (12)

Now c4c_{4} and c5c_{5} can be expressed in terms of c2c_{2} and c3c_{3} by substituting (11) and (12) into either equation of (9). By using the second equation, we find, after combining terms,

(c52c42c2)sin2t+(2c5+c4+2c3)cos2t=0\left(c_{5}-2 c_{4}-2 c_{2}\right) \sin 2 t+\left(2 c_{5}+c_{4}+2 c_{3}\right) \cos 2 t=0

so that c52c42c2=0c_{5}-2 c_{4}-2 c_{2}=0 and 2c5+c4+2c3=02 c_{5}+c_{4}+2 c_{3}=0. Solving for c4c_{4} and c5c_{5} in terms of c2c_{2} and c3c_{3} gives c4=15(4c2+2c3)c_{4}=-\frac{1}{5}\left(4 c_{2}+2 c_{3}\right) and c5=15(2c24c3)c_{5}=\frac{1}{5}\left(2 c_{2}-4 c_{3}\right). Finally, a solution of (9)(9) is found to be

 x(t)=15(4c2+2c3)cos2t+15(2c24c3)sin2t14t2+18, y(t)=c1+c2cos2t+c3sin2t+112t3+14t218t.   x(t)=-\frac{1}{5}\left(4 c_{2}+2 c_{3}\right) \cos 2 t+\frac{1}{5}\left(2 c_{2}-4 c_{3}\right) \sin 2 t-\frac{1}{4} t^{2}+\frac{1}{8}, \\  y(t)=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t+\frac{1}{12} t^{3}+\frac{1}{4} t^{2}-\frac{1}{8} t. 

Related Answered Questions

Question: 3.8.6

Verified Answer:

We can interpret the problem to represent a vibrat...
Question: 3.3.4

Verified Answer:

The auxiliary equation m^4+2 m^2+1=\left(m^...
Question: 3.3.3

Verified Answer:

It should be apparent from inspection of m^...
Question: 3.12.1

Verified Answer:

Operating on the first equation by D-3[/lat...