Question 8.8.2: Find the eigenvalues and eigenvectors of A = (1 2 1 6 -1 0 -......

Find the eigenvalues and eigenvectors of

\mathrm{A}=\left(\begin{array}{rrr} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{array}\right) .     (5)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

To expand the determinant in the characteristic equation

\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=\left|\begin{array}{ccc} 1-\lambda & 2 & 1 \\ 6 & -1-\lambda & 0 \\ -1 & -2 & -1-\lambda \end{array}\right|=0,

we use the cofactors of the second row. It follows that the characteristic equation is

-\lambda^{3}-\lambda^{2}+12 \lambda=0 \quad \text { or } \quad \lambda(\lambda+4)(\lambda-3)=0

Hence the eigenvalues are \lambda_{1}=0, \lambda_{2}=-4, \lambda_{3}=3. To find the eigenvectors, we must now reduce (\mathrm{A}-\lambda \mathrm{I} \mid \mathrm{0}) three times corresponding to the three distinct eigenvalues.

For \lambda_{1}=0, we have

\begin{aligned} (\mathrm{A}-0 \mathrm{I} \mid \mathrm{0})= & \left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 6 & -1 & 0 & 0 \\ -1 & -2 & -1 & 0 \end{array}\right) \stackrel{-6 R_{1}+R_{2}}{\stackrel{R_{1}+R_{3}}{\Rightarrow}}\left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 0 & -13 & -6 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \\ & \stackrel{-\frac{1}{13} R_{2}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{6}{13} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \stackrel{-2 R_{2}+R_{1}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 0 & \frac{1}{13} & 0 \\ 0 & 1 & \frac{6}{13} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) . \end{aligned}

Thus we see that k_{1}=-\frac{1}{13} k_{3} and k_{2}=-\frac{6}{13} k_{3}. Choosing k_{3}=-13 gives the eigenvector

\mathrm{K}_{1}=\left(\begin{array}{r} 1 \\ 6 \\ -13 \end{array}\right).

For \lambda_{2}=-4,

(\mathrm{A}+4 \mathrm{I} \mid \mathrm{0})=\left(\begin{array}{rrr|r} 5 & 2 & 1 & 0 \\ 6 & 3 & 0 & 0 \\ -1 & -2 & 3 & 0 \end{array}\right) \stackrel{\substack{-R_{3} \\ R_{1} \leftrightarrow R_{3}}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & -3 & 0 \\ 6 & 3 & 0 & 0 \\ 5 & 2 & 1 & 0 \end{array}\right)

\begin{aligned} & \stackrel{\substack{-6 R_{1}+R_{2} \\ -5 R_{1}+R_{3}}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & -3 & 0 \\ 0 & -9 & 18 & 0 \\ 0 & -8 & 16 & 0 \end{array}\right) \stackrel{\substack{-\frac{1}{9} R_{2} \\ -\frac{1}{8} R_{3}}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \end{array}\right) \\ & \underset{\Rightarrow}{\stackrel{-2 R_{2}+R_{1}}{-R_{2}+R_{3}}}\left(\begin{array}{rrr|r} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \end{aligned}

implies k_{1}=-k_{3} and k_{2}=2 k_{3}. Choosing k_{3}=1 then yields a second eigenvector

\mathrm{K}_{2}=\left(\begin{array}{r} -1 \\ 2 \\ 1 \end{array}\right).

Finally, for \lambda_{3}=3, Gauss-Jordan elimination gives

(\mathrm{A}-3 \mathrm{I} \mid \mathrm{0})=\left(\begin{array}{rrr|r} -2 & 2 & 1 & 0 \\ 6 & -4 & 0 & 0 \\ -1 & -2 & -4 & 0 \end{array}\right) \stackrel{\substack{\text { row } \\ \text { operations }}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 0 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right),

and so k_{1}=-k_{3} and k_{2}=-\frac{3}{2} k_{3}. The choice of k_{3}=-2 leads to a third eigenvector,

\mathrm{K}_{3}=\left(\begin{array}{r} 2 \\ 3 \\ -2 \end{array}\right).

Related Answered Questions

Question: 8.6.7

Verified Answer:

We found the inverse of the coefficient matrix [l...
Question: 8.2.5

Verified Answer:

(a) Using row operations on the augmented matrix o...
Question: 8.2.2

Verified Answer:

We begin by interchanging the first and second row...
Question: 8.9.1

Verified Answer:

The characteristic equation of \mathrm{A}[/...
Question: 8.8.5

Verified Answer:

The characteristic equation is \operatorna...
Question: 8.8.4

Verified Answer:

The characteristic equation \operatorname{...
Question: 8.8.3

Verified Answer:

From the characteristic equation \operator...
Question: 8.8.1

Verified Answer:

By carrying out the multiplication AK we see [late...
Question: 8.7.1

Verified Answer:

The solution requires the evaluation of four deter...
Question: 8.6.6

Verified Answer:

The given system can be written as \left(\...