Region with a Hole
Evaluate \oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y, where C = C_{1} \cup C_{2} is the boundary of the shaded region R shown in FIGURE 9.12.9.
Because P(x, y) = \frac{-y}{x^{2}+y^{2}}, Q(x, y) = \frac{x}{x^{2}+y^{2}}, and the partial derivatives
\frac{\partial P}{\partial y} = \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, = \frac{\partial Q}{\partial x} = \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
are continuous on the region R bounded by C, it follows from (4) that
\oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y = \iint_{R}\left[\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d A = 0 .