The dissipation function given by equation (4.150) becomes
F=21∑r=1n∑s=1ncrsq˙rq˙s (4.150)
F=21[c1q˙12+c2(rq˙2−q˙1)2]
Substitution into equation (4.151) yields the generalized forces
Qj=−∂q˙j∂F, for each j=1,2,…,n (4.151)
Q1=−∂q˙1∂F=−c1q˙1−c2(rq˙2−q˙1)(−1)=−(c1+c2)q˙1+c2rq˙2Q2=−∂q˙2∂F=−c2(rq˙2−q˙1)(r)=−c2r2q˙2+rc2q˙1
Adding the moment as indicated in Example 4.7.1, the second generalized force becomes
Q2=M(t)−c2r2q˙2+rc2q˙1
Next, using T and U as given in Example 4.7.1, recalculate the equations of motion using equation (4.144) to get, for i=1 :
dtd(∂q˙i∂T)−∂qi∂T+∂qi∂U=Qii=1,2,…,n (4.144)
mq¨1+(k1+k2)q1−k2rq2=Q1=−(c1+c2)q˙1+c2rq˙2 or: mq¨1+(c1+c2)q˙1−c2rq˙2+(k1+k2)q1−k2q2=0
and for i=2 :
Jq¨2+k2r2q2−k2rq1=Q2=M(t)−c2r2q˙2+rc2q˙1 or: Jq¨2+c2r2q˙2−rc2q˙1+k2r2q2−k2rq1=M(t)
Combining the expressions for i=1 and i=2 yields the matrix form of the equations of motion:
[m00J]x¨(t)+[c1+c2−rc2−rc2r2c2]x˙(t)+[k1+k2−rk2−rk2r2k2]x(t)=[0M(t)]