Question 4.7.4: Consider again the system of Example 4.7.1 and assume that t......

Consider again the system of Example 4.7.1 and assume that there is a viscous damper of coefficient c1c_1, parallel to k1k_1, and a damper of coefficient c2c_2, parallel to k2k_2. Derive the equations of motion for the system using Lagrange’s equations.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The dissipation function given by equation (4.150) becomes

F=12r=1ns=1ncrsq˙rq˙s F=\frac{1}{2} \sum_{r=1}^n \sum_{s=1}^n c_{r s} \dot{q}_r \dot{q}_s              (4.150)

F=12[c1q˙12+c2(rq˙2q˙1)2]F=\frac{1}{2}\left[c_1 \dot{q}_1^2+c_2\left(r \dot{q}_2-\dot{q}_1\right)^2\right]

Substitution into equation (4.151) yields the generalized forces

Qj=Fq˙j, for each j=1,2,,n Q_j=-\frac{\partial F}{\partial \dot{q}_j}, \text { for each } j=1,2, \ldots, n            (4.151)

Q1=Fq˙1=c1q˙1c2(rq˙2q˙1)(1)=(c1+c2)q˙1+c2rq˙2Q2=Fq˙2=c2(rq˙2q˙1)(r)=c2r2q˙2+rc2q˙1 \begin{aligned} & Q_1=-\frac{\partial F}{\partial \dot{q}_1}=-c_1 \dot{q}_1-c_2\left(r \dot{q}_2-\dot{q}_1\right)(-1)=-\left(c_1+c_2\right) \dot{q}_1+c_2 r \dot{q}_2 \\ & Q_2=-\frac{\partial F}{\partial \dot{q}_2}=-c_2\left(r \dot{q}_2-\dot{q}_1\right)(r)=-c_2 r^2 \dot{q}_2+r c_2 \dot{q}_1 \end{aligned}

Adding the moment as indicated in Example 4.7.1, the second generalized force becomes

Q2=M(t)c2r2q˙2+rc2q˙1Q_2=M(t)-c_2 r^2 \dot{q}_2+r c_2 \dot{q}_1

Next, using TT and UU as given in Example 4.7.1, recalculate the equations of motion using equation (4.144) to get, for i=1i=1 :

ddt(Tq˙i)Tqi+Uqi=Qii=1,2,,n \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_i}\right)-\frac{\partial T}{\partial q_i}+\frac{\partial U}{\partial q_i}=Q_i \quad i=1,2, \ldots, n               (4.144)

mq¨1+(k1+k2)q1k2rq2=Q1=(c1+c2)q˙1+c2rq˙2 or: mq¨1+(c1+c2)q˙1c2rq˙2+(k1+k2)q1k2q2=0 \begin{gathered} m \ddot{q}_1+\left(k_1+k_2\right) q_1-k_2 r q_2=Q_1=-\left(c_1+c_2\right) \dot{q}_1+c_2 r \dot{q}_2 \text { or: } \\ m \ddot{q}_1+\left(c_1+c_2\right) \dot{q}_1-c_2 r \dot{q}_2+\left(k_1+k_2\right) q_1-k_2 q_2=0 \end{gathered}

and for i=2i=2 :

Jq¨2+k2r2q2k2rq1=Q2=M(t)c2r2q˙2+rc2q˙1 or: Jq¨2+c2r2q˙2rc2q˙1+k2r2q2k2rq1=M(t) \begin{gathered} J \ddot{q}_2+k_2 r^2 q_2-k_2 r q_1=Q_2=M(t)-c_2 r^2 \dot{q}_2+r c_2 \dot{q}_1 \text { or: } \\ J \ddot{q}_2+c_2 r^2 \dot{q}_2-r c_2 \dot{q}_1+k_2 r^2 q_2-k_2 r q_1=M(t) \end{gathered}

Combining the expressions for i=1i=1 and i=2i=2 yields the matrix form of the equations of motion:

[m00J]x¨(t)+[c1+c2rc2rc2r2c2]x˙(t)+[k1+k2rk2rk2r2k2]x(t)=[0M(t)] \left[\begin{array}{cc} m & 0 \\ 0 & J \end{array}\right] \ddot{ \mathrm{x} }(t)+\left[\begin{array}{cc} c_1+c_2 & -r c_2 \\ -r c_2 & r^2 c_2 \end{array}\right] \dot{ \mathrm{x} }(t)+\left[\begin{array}{cc} k_1+k_2 & -r k_2 \\ -r k_2 & r^2 k_2 \end{array}\right] \mathrm{x} (t)=\left[\begin{array}{c} 0 \\ M(t) \end{array}\right]

Related Answered Questions

Question: 4.1.2

Verified Answer:

Again, the product is formed by considering the fi...
Question: 4.4.1

Verified Answer:

= 1[(1)(3) - (1)(5)] - 3[(0)(3) - (2)(1)] - 2[(0)(...
Question: 4.1.4

Verified Answer:

The inverse of a square matrix AA is...