Question 5.24: Determine the equivalent inductance of the inductive networ......

Determine the equivalent inductance of the inductive network with coupled coils shown in Fig. 1.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let us connect a sinusoidal voltage source of value, E\overline{E} as shown in Fig. 2. Let Iˉ1 and Iˉ2\bar{I}_1 \text { and } \bar{I}_2 be the mesh currents.

Now, Equivalent inductive reactance, jωLeq=EI1 j \omega L_{e q}=\frac{\overline{E}}{\overline{I}_1}

Let us name the coils as shown in Fig. 2. Now, I1\overline{I}_1 is the current through coil-A, I1I2\overline{ I }_1-\overline{ I }_2 is the current through coil-B and I2\overline{I}_2 is the current through coils C and D.

The current flowing in each coupled coil will induce an emf in the other coil. Therefore, in the circuit of Fig. 2, there will be four mutual induced emfs as explained below :

Emf-1: The current Iˉ1 entering at the undotted end in coil-A will induce an emf j2ωIˉ1 in coil-C such that the undotted end is positive.\text{Emf-1: The current $\bar{I}_1$ entering at the undotted end in coil-A will induce an emf $j 2 \omega \bar{I}_1$ in coil-C such that the undotted end is positive.} Emf-2 : The current Iˉ1Iˉ2 entering at the dotted end in coil-B will induce an emf j3ω(I1I2) in coil-D such that the dotted end is positive.\text{Emf-2 : The current $\bar{I}_1-\bar{I}_2$ entering at the dotted end in coil-B will induce an emf $j 3 \omega\left(\overline{ I }_1-\overline{ I }_2\right)$ in coil-D such that the dotted end is positive.}  Emf-3 : The current Iˉ2 entering at the dotted end in coil-C will induce an emf j2ωIˉ2 in coil-A such that the dotted end is positive.  \text { Emf-3 : The current } \bar{I}_2 \text { entering at the dotted end in coil-C will induce an emf } j 2 \omega \bar{I}_2 \text { in coil-A such that the dotted end is positive. }  Emf-4: The current I2 entering at the dotted end in coil-D will induce an emf j3ωI2 in coil-B such that the dotted end is positive.  \text { Emf-4: The current } \overline{ I }_2 \text { entering at the dotted end in coil-D will induce an emf } j 3 \omega \overline{ I }_2 \text { in coil-B such that the dotted end is positive. }

The self- and mutual induced emfs in the coils are shown in Fig. 3.

By KVL in mesh-1,

j5ωI1+j6ω(I1I2)+j3ωI2=j2ωI2+Ej11ωI1j5ωI2=E \begin{aligned} & j 5 \omega \overline{ I }_1+ j 6 \omega\left(\overline{ I }_1-\overline{ I }_2\right)+ j 3 \omega \overline{ I }_2= j 2 \omega \overline{ I }_2+\overline{ E } \\ & \therefore j 11 \omega \overline{ I }_1- j 5 \omega \overline{ I }_2=\overline{ E } \end{aligned}                   …..(1)

By KVL in mesh-2,

j8ωI2+j9ωI2+j3ω(I1I2)=j6ω(I1I2)+j3ωI2+j2ωI1j5ωI1+j17ωI2=0 \begin{aligned} & j 8 \omega \overline{ I }_2+ j 9 \omega \overline{ I }_2+ j 3 \omega\left(\overline{ I }_1-\overline{ I }_2\right)= j 6 \omega\left(\overline{ I }_1-\overline{ I }_2\right)+ j 3 \omega \overline{ I }_2+ j 2 \omega \overline{ I }_1 \\ & \therefore- j 5 \omega \overline{ I }_1+ j 17 \omega \overline{ I }_2=0 \end{aligned}       …..(2)

On arranging equations (1) and (2) in matrix form we get,

[j11ωj5ωj5ωj17ω][I1I2]=[E0] \left[\begin{array}{cc} j 11 \omega & – j 5 \omega \\ – j 5 \omega & j 17 \omega \end{array}\right]\left[\begin{array}{l} \overline{ I }_1 \\ \overline{ I }_2 \end{array}\right]=\left[\begin{array}{l} \overline{ E } \\ 0 \end{array}\right]

 Now, Δ1=Eˉj5ω0j17ω=Eˉ×j17ω0=j17ωEˉ \text { Now, } \Delta_1=\left|\begin{array}{cc} \bar{E} & -j 5 \omega \\ 0 & j 17 \omega \end{array}\right|=\bar{E} \times j 17 \omega-0=j 17 \omega \bar{E}

Δ=j11ωj5ωj5ωj17ω=j11ω×j17ω(j5ω)2=187ω2+25ω2=162ω2 \begin{aligned}\Delta=\left|\begin{array}{rr} j 11 \omega & -j 5 \omega \\ -j 5 \omega & j 17 \omega \end{array}\right| & =j 11 \omega \times j 17 \omega-(-j 5 \omega)^2 \\ & =-187 \omega^2+25 \omega^2=-162 \omega^2 \end{aligned}

I1=Δ1Δ=j17ωE162ω2=17j162ωEEI1=j16217ω \begin{aligned} & \overline{ I }_1=\frac{\Delta_1}{\Delta}=\frac{ j 17 \omega \overline{ E }}{-162 \omega^2}=\frac{17}{ j 162 \omega} \overline{ E } \\ & \therefore \frac{\overline{ E }}{\overline{ I}_1}=\frac{ j 162}{17} \omega \end{aligned}  Here, EˉIˉ1=jωLeq ,jωLeq =j16217ωLeq =16217H \text { Here, } \frac{\bar{E}}{\bar{I}_1}=j \omega L_{\text {eq }}, \quad \therefore j \omega L_{\text {eq }}=\frac{j 162}{17} \omega \Rightarrow \quad L_{\text {eq }}=\frac{162}{17} H

RESULT

Equivalent inductance, Leq=16217H=9.5294H L _{ eq }=\frac{162}{17} H=9.5294 H

2
3

Related Answered Questions

Question: 5.22

Verified Answer:

a) To find the equivalent inductance of series-con...
Question: 5.23

Verified Answer:

Let current through the parallel branches be [late...
Question: 5.25

Verified Answer:

Let us assume the current through parallel arms as...
Question: 5.27

Verified Answer:

Let us assume two mesh currents \bar{I}_1 \...
Question: 5.29

Verified Answer:

The current Ip\overline{I}_p entering...