Question 5.30: A voltage of 115 V at a frequency of 10 kHz is applied to t......

A voltage of 115 V at a frequency of 10 kHz is applied to the primary of the coupled circuit shown in Fig. 1. Determine the total impedance referred to primary and the currents in primary and secondary.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given that, f=10 kHz , L _p=200 \mu H , \quad C _{ p }=5 \mu F

M =75 \mu H , \quad L _{ s }=100 \mu H , \quad C _{ s }=0.1 \mu F

Primary inductive reactance = j 2 \pi fL _{ p }= j 2 \pi \times 10 \times 10^3 \times 200 \times 10^{-6}

= j12.5664 Ω

Primary capacitive reactance =\frac{1}{ j 2 \pi fC _{ p }}=\frac{1}{ j 2 \pi \times 10 \times 10^3 \times 5 \times 10^{-6}}=- j 3.1831 \Omega

Mutual reactance = j 2 \pi fM = j 2 \pi \times 10 \times 10^3 \times 75 \times 10^{-6}= j 4.7124 \Omega

Secondary inductive reactance = j 2 \pi f L _{ s }= j 2 \pi \times 10 \times 10^3 \times 100 \times 10^{-6}= j 6.2832 \Omega

Secondary capacitive reactance =\frac{1}{ j 2 \pi fC }=\frac{1}{ s 2 \pi \times 10 \times 10^3 \times 0.1 \times 10^{-6}}=- j 159.1549 \Omega

The frequency domain equivalent of the coupled circuit is shown in Fig. 2. Let \bar{I}_{ p } \text { and } \bar{I}_{ s } be the primary
and secondary currents as shown in Fig. 2. The electrical equivalent of the coupled circuit is shown in Fig. 3. (Here it is group-I coupled circuit).

With reference to Fig. 3, the mesh basis matrix equation can be obtained as shown below :

\left[\begin{array}{rr} 12+ j 7.854+ j 4.7124- j 3.1831 & – j 4.7124 \\ – j 4.7124 & j 4.7124+ j 1.5708+8- j 159.1549 \end{array}\right]\left[\begin{array}{l} \overline{ I }_{ p } \\ \overline{ I }_{ s } \end{array}\right]=\left[\begin{array}{r} 115 \angle 0^{\circ} \\0 \end{array}\right]

\left[\begin{array}{rr} 12+j 9.3833 & -j 4.7124 \\ -j 4.7124 & 8-j 152.8717 \end{array}\right]\left[\begin{array}{l} \bar{I}_p \\ \bar{I}_s \end{array}\right]=\left[\begin{array}{r} 115 \\ 0 \end{array}\right]

\text { Now, } \Delta=\left|\begin{array}{rr} 12+j 9.3833 & -j 4.7124 \\ -j 4.7124 & 8-j 152.8717 \end{array}\right|=(12+j 9.3833) \times(8-j 152.8717)-(-j 4.7124)^2

= 1552.6477 – j1759.394

\begin{aligned} \Delta_p=\left|\begin{array}{rr} 115 & -j 4.7124 \\ 0 & 8- j 152.8717 \end{array}\right| & =115 \times(8- j 152.8717)-0 \\ & =920- j 17580.2455 \end{aligned}

\begin{aligned} \Delta_{ S }=\left|\begin{array}{rr} 12+ j 9.3833 & 115 \\ – j 4.7124 & 0 \end{array}\right| & =0-(- j 4.7124) \times 115 \\ & = j 541.926 \end{aligned}

\begin{aligned} & \overline{ I }_{ p }=\frac{\Delta_{ p }}{\Delta}=\frac{920- j 17580.2455}{1552.6477- j 1759.394}=5.8769- j 4.6634 A =7.5023 \angle-38.4^{\circ} A \\ & \overline{ I }_{ s }=\frac{\Delta_{ s }}{\Delta}=\frac{ j 541.926}{1552.6477- j 1759.394}=-0.1732+ j 0.1528 A =0.231 \angle 138.6^{\circ} A \end{aligned}

Total impedance referred to primary =\frac{115 \angle 0^{\circ}}{\overline{ I }_{ p }}

=\frac{115 \angle 0^{\circ}}{7.5023 \angle-38.4^{\circ}}=15.3286 \angle 38.4^{\circ} \Omega

RESULT

\text { Primary current, } \bar{I}_p=7.5023 \angle-38.4^{\circ} A

 

\text { Secondary current, } \overline{ I}_{ s }=0.231 \angle 138.6^{\circ} A

 

\text { Total impedance referred to primary }=15.3286 \angle 38.4^{\circ} A
2.3

Related Answered Questions

Question: 5.22

Verified Answer:

a) To find the equivalent inductance of series-con...
Question: 5.23

Verified Answer:

Let current through the parallel branches be [late...
Question: 5.24

Verified Answer:

Let us connect a sinusoidal voltage source of valu...
Question: 5.25

Verified Answer:

Let us assume the current through parallel arms as...
Question: 5.27

Verified Answer:

Let us assume two mesh currents \bar{I}_1 \...
Question: 5.29

Verified Answer:

The current \overline{I}_p entering...