Question 26.11: If the laminate of P.26.10 is subjected to a membrane load i......

If the laminate of  P.26.10 is subjected to a membrane load intensity N_{x}=100\,\mathrm{N/mm}, investigate the strength of the laminate given that X_{T}\!=\!1200\;\mathrm{N/m}m^{2},\;X_{\mathrm{C}}\!=\!1000^{\mathrm{2}}\mathrm{N/m}m^{2},\;Y_{\mathrm{T}}\!=\!75\;\mathrm{N/m}m^{2}, Y_{\mathrm{C}}\!=\!200\ \mathrm{N/m}m^{2},\ \mathrm{and}\ S=70\ \mathrm{N/mm^{2}}.

Therefore a direct stress failure of the plies occurs in the transverse direction together with a failure in shear.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The values of \bar{k}_{11} etc. and a_{11} etc. have been calculated in Ex. 26.10. The ply stresses are then given, in matrix form by (see Eq. (iv) of Ex. 26.12)

\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{lll}44216 & 34216 & 32707 \\34216 & 44216 & 32707 \\32707 & 32707 & 36258\end{array}\right]\left[\begin{array}{ccc}1.53 & -0.57 & -0.87 \\-0.57 & 1.53 & -0.87 \\-0.87 & -0.87 & 2.02\end{array}\right]\left[\begin{array}{c}100 \\0 \\0\end{array}\right] \times 10^{-4}

Simplifying,

\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{lll}44216 & 34216 & 32707 \\34216 & 44216 & 32707 \\32707 & 32707 & 36258\end{array}\right]\left[\begin{array}{c}153 \\-57 \\-87\end{array}\right] \times 10^{-4}

which gives

\begin{aligned}& \sigma_x=196.9 N / mm ^2 \\& \sigma_y=-13.1 N / mm ^2 \\& \tau_{x y}=-1.5 N / mm ^2\end{aligned}

The ply angle is 45° so that m=1/√2=n. Then, from Eq. (26.24),

\left\{\begin{matrix} \sigma _{l} \\ \sigma _{t} \\ \tau _{lt} \end{matrix} \right\} =\left[\begin{matrix} m^{2} & n^{2} & 2mn \\ n^{2} & m^{2} & -2mn \\ -mn & mn & m^{2}-n^{2} \end{matrix} \right] \left\{\begin{matrix} \sigma _{x} \\ \sigma _{y} \\ \tau _{xy} \end{matrix} \right\}            (26.24)\left\{\begin{array}{l}\sigma_1 \\\sigma_{ t } \\\tau_{ lt }\end{array}\right\}=\left[\begin{array}{ccc}0.5 & 0.5 & 1 \\0.5 & 0.5 & -1 \\-0.5 & 0.5 & 0\end{array}\right]\left\{\begin{array}{c}196.9 \\-13.1 \\-1.5\end{array}\right\}

which gives

\begin{aligned}& \sigma_{ l }=90.4 N / mm ^2 \\& \sigma_{ t }=93.4 N / mm ^2 \\& \tau_{ lt }=-105.0 N /mm ^2\end{aligned}

Then

\begin{aligned}& \sigma_l / X_{ T }=90.4 /1200=0.08 \\& \sigma_{ t } / Y_{ T }=93.4 / 75=1.25 \\& \tau_{ lt } / S=105 / 70=1.5\end{aligned}

Therefore the plies fail in the transverse direction and also in shear.

Related Answered Questions