Question 26.10: A symmetric single-ply laminate comprises four isotropic pli......

A symmetric single-ply laminate comprises four isotropic plies of which the two outer plies are each 0.15 mm thick and are of aluminium alloy material while the two inner plies are each 0.15 mm thick but are of mild steel material. The ply angle for the outer plies is +45° while that for the inner plies is -45°. If, for the aluminium alloy E_{ al }=70,000 N / mm ^2 \text { and } ν _{ al }=0.3 while for mild steel E_{\mathrm{st}}\!=\!200,000\,\mathrm{N/m}m^{2}\,\mathrm{and}\ \mathrm{ν_{st}}\!=\!0.3, calculate the equivalent elastic constants for the laminate.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For the aluminium alloy plies E_{1}\!=\!E_{\mathrm{t}}\!=\!E=70000\;\mathrm{N/mm}^{2},\;\nu_{\mathrm{lt}}\!=\!\nu_{\mathrm{tl}}\!=\!0.3, nd for an isotropic material, from Eq. (1.50),

G_{\mathrm{{lt}}}={\frac{70000}{2(1+0.3)}}=26923\mathrm{{N/mm^{2}}}

Then, from Eq. (26.17),

\left\{\begin{array}{l}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_l}{1-ν_{l t} ν_{t l}} & \frac{ν_{t l} E_l}{1-ν_{lt} ν_{t l}} & 0 \\\frac{ν_{l t} E_t}{1-ν_{l t} ν_{t l}} &\frac{E_t}{1-ν_{l t} ν_{t l}} & 0 \\0 & 0 & G_{l t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_l \\\varepsilon_t \\\gamma_{l t}\end{array}\right\}          (26.17)\begin{aligned}& k_{11}=70000 /\left(1-0.3^2\right)=76923 N / mm ^2 \\& k_{22}=76923 N / mm ^2 \\& k_{33}=26923 N / mm ^2 \\& k_{12}=0.3 \times 70000 /\left(1-0.3^2\right)=23077 N / mm ^2 \\& k_{13}=k_{23}=0\end{aligned}

Since the ply angle is 45°, m=1/√2 =n. Then, from Eqs (26.31),

\begin{gathered}\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^4k_{11}+m^2 n^2\left(2 k_{12}\right. & m^2n^2\left(k_{11}+k_{22}-4 k_{33}\right) & m^3n\left(k_{11}-k_{12}-2 k_{33}\right) \\\left.+4k_{33}\right)+n^4 k_{22} &+\left(m^4+n^4\right) k_{12} & +m n^3\left(k_{12}-k_{22}+2 k_{33}\right) \\m^2 n^2\left(k_{11}+k_{22}-4k_{33}\right) & n^4 k_{11}+m^2 n^2\left(2 k_{12}\right. & m n^3\left(k_{11}-k_{12}-2 k_{33}\right) \\+\left(m^4+n^4\right) k_{12} &\left.+4 k_{33}\right)+m^4 k_{22} & +m^3n\left(k_{12}-k_{22}+2 k_{33}\right) \\m^3 n\left(k_{11}-k_{12}-2 k_{33}\right) & m n^3\left(k_{11}-k_{12}-2 k_{33}\right) & m^2 n^2\left(k_{11}+k_{22}-2k_{12}\right. \\+mn^3\left(k_{12}+k_{22}+2 k_{33}\right) & +m^3n\left(k_{12}-k_{22}+2 k_{33}\right) & \left.-2k_{33}\right)+\left(m^4+n^4\right) k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}\end{gathered}          (26.31)
k_{11}=(1 / \sqrt{2})^4 \times 76923+(1 /\sqrt{2})^2(1 / \sqrt{2})^2(2 \times 23077+4 \times 26923)+(1 / \sqrt{2})^4 \times 76923

i.e.,

{\overline{{k}}}_{11}=76923N/{\mathrm{mm}^{2}}

Similarly,

\begin{aligned}& \bar{k}_{22}=76923 N / mm ^2\\& \bar{k}_{33}=26923 N / mm ^2 \\&\bar{k}_{12}=23077 N / mm ^2 \\&\bar{k}_{13}=0=\bar{k}_{23}\end{aligned}

For the steel plies, E_1=E_{ t }=E=200000 N / mm ^2, \nu_{ lt }=\nu_{ tl }=0.3 and from Eq. (1.50),
G=200000/2(1 + 0.3)=76923 N/mm². Then, from Eq. (26.17),

\begin{aligned}& k_{11}=200000 /\left(1-0.3^2\right)=219780 N / mm ^2 \\& k_{22}=219780 N /mm ^2 \\& k_{33}=76923 N / mm ^2 \\& k_{12}=0.3 \times 200000 /\left(1-0.3^2\right)=65934 N / mm ^2\\& k_{13}=k_{23}=0\end{aligned}

The ply angle is –45° so that m=1/√2 and n=-1/√2. Then, from Eqs (26.31),

\begin{aligned}& \bar{k}_{11}=219780 N / mm ^2\\& \bar{k}_{22}=219780 N / mm ^2 \\&\bar{k}_{33}=76923 N / mm ^2 \\&\bar{k}_{12}=65934 N / mm ^2 \\&\bar{k}_{13}=\bar{k}_{23}=0\end{aligned}

From Eq. (26.47),

A_{ ij }=\sum\limits_{ p =1}^{ N } t_{ p }\left(\bar{k}_{ ij }\right)_{ p } \quad( i =1,2,3, \ldots, j =1,2,3, \ldots)          (26.47)

\begin{aligned}& A_{11}=2 \times 0.15(76923+219780)=89011 N / mm \\ & A_{22}=2\times 0.15(76923+219780)=89011 N / mm \\& A_{33}=2 \times 0.15(26923+76923)=31154 N / mm \\& A_{12}=2 \times 0.15(23077+65934)=26703 N / mm \\& A_{13}=A_{23}=0\end{aligned}

Then, from Eq. (26.54),

A A=\left(A_{11}A_{22}-A_{12}^{\ 2}\right)A_{33}          (26.54)

A A=89011 \times 89011 \times 31154-26703^2\times 31154=2.25 \times 10^{14}

Now, from Eqs (26.55),

\begin{aligned}& a_{11}=\left(A_{22}\right)/\left(A_{11} A_{22}-A_{12}^2\right) \\& a_{22}=\left(A_{11}\right)/\left(A_{11} A_{22}-A_{12}{ }^2\right) \\& a_{33}=1 / A_{33} \\& a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A_{12}{}^2\right) \\& a_{13}=0 \\& a_{23}=0\end{aligned}        (26.55)\begin{aligned}& a_{11}=89011 \times 31154 / 2.25\times 10^{14}=1.23 \times 10^{-5} \\& a_{22}=1.23 \times 10^{-5} \\& a_{33}=3.21 \times 10^{-5} \\& a_{12}=-0.37 \times 10^{-5} \\& a_{13}=a_{23}=0\end{aligned}

From Eq. (26.56),

E_{x}={\frac{1}{t a_{11}}}          (26.56)

E_x=\frac{1}{4 \times 0.15 \times 1.23 \times 10^{-5}}=135501 N / mm ^2

From Eq. (26.59),

E_{y}={\frac{1}{t a_{22}}}          (26.59)

E_y=\frac{1}{4 \times 0.15 \times 1.23 \times 10^{-5}}=135501 N / mm ^2

From Eq. (26.62),

\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{ta_{33}}=G_{x y}          (26.62)

G_{x y}=\frac{1}{4 \times 0.15 \times 3.21 \times 10^{-5}}=51921 N / mm ^2

From Eq. (26.57),

ν_{x y}=\frac{-\varepsilon_y}{\varepsilon_x}=\frac{-a_{12}}{a_{11}}          (26.57)
\nu_{x y}=-\frac{\left(-0.37 \times 10^{-5}\right)}{1.23 \times 10^{-5}}=0.3

From Eq. (26.60),

ν_{y x}=\frac{-a_{12}}{a_{22}}          (26.60)

\nu_{y x}=-\frac{\left(-0.37 \times 10^{-5}\right)}{1.23 \times 10^{-5}}=0.3

Finally, from Eq. (26.58), m_{x}{=}0, and from Eq. (26.61), m_{y}=0.

\frac{\gamma_{x y}}{\varepsilon_x}=\frac{a_{13}}{a_{11}}=-m_x          (26.58)

m_{\mathrm{y}}={\frac{-a_{23}}{a_{22}}}          (26.61)

Related Answered Questions