Question 27.3: A singly symmetrical, thin-walled, closed section beam is bu......

A singly symmetrical, thin-walled, closed section beam is built in at one end, where a shear load of 10,000 N is applied as shown in Fig. P.27.3. Calculate the resulting shear flow distribution at the built-in end if the cross-section of the beam remains undistorted by the loading and the shear modulus G and wall thickness t are each constant throughout the section.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Referring to Fig. S.27.3, the shear flows in the walls 12 and 23 are constant, since the walls are straight (see Eq. (27.1)). Choosing O as the origin of axes, from Eq. (27.1),

q=G t\left(p \frac{ d \theta}{ d z}+\frac{ d u}{ d z}\cos \psi+\frac{ d υ}{ d z} \sin \psi\right)         (27.1)

q_{12}=G t(\theta^{\prime}R\cos30^{\circ}+u^{\prime}\cos30^{\circ}+υ^{\prime}\sin30^{\circ})

i.e.,

q_{12}=G t(0.8666R\theta^{\prime}+0.866u^{\prime}+0.5υ^{\prime})          (i)

q_{23}=G t(0.866R\theta^{\prime}-0.866u^{\prime}+0.5υ^{\prime})          (ii)

q_{31}=G t(R\theta^{\prime}-u^{\prime}\cos\phi-υ^{\prime}\sin\phi)        (iii)

Resolving forces vertically,

q_{12} R+q_{23} R-\int_0^\pi q_{31} \sin \phi R d \phi=10000 \sin 30^{\circ}

i.e.,

q_{12}+q_{23}-\int_0^\pi q_{31} \sin \phi d\phi=\frac{5000}{R}          (iv)

Substituting in Eq. (iv) for q_{12},\,q_{23},\,\mathrm{and}\,\,q_{31} from Eqs (i)–(iii), respectively, gives

R \theta^{\prime}-9.59 υ^{\prime}=-\frac{18656.7}{G t R}        (v)

Resolving forces horizontally,

q_{12}\left(R / \tan 30^{\circ}\right)-q_{23}\left(R/ \tan 30^{\circ}\right)-\int_0^\pi q_{31} \cos \phi R d\phi=10000 \cos 30^{\circ}

i.e.,

1.732 q_{12}-1.732 q_{23}-\int_0^\pi q_{31} \cos \phi d \phi=\frac{8660.3}{R}        (vi)

Substituting in Eq. (vi) for q_{12},\,q_{23},\,\mathrm{and}\,q_{31} from Eqs (i)–(iii), respectively, gives

u^{\prime}=\frac{1894.7}{G t R}        (vii)

Taking moments about O,

q_{12}\left(R / \tan 30^{\circ}\right)R+q_{23}\left(R / \tan 30^{\circ}\right)R+\int_0^\pi q_{31} R^2 d \phi=10000 R \cos 30^{\circ}

i.e.,

1.732 q_{12}+1.732 q_{23}+\int_0^\pi q_{31} d \phi=\frac{8660.3}{R}          (viii)

Substituting in Eq. (viii) for q_{12},\,q_{23},\mathrm{~and~}q_{31} from Eqs (i)–(iii), respectively, gives

R\theta^{\prime}-0.0444υ^{\prime}={\frac{1410.0}{G t R}}        (ix)

Now, subtracting Eq. (ix) from (v),

-9.546υ^{\prime}=-{\frac{20.066.7}{G t R}}

whence,

υ^{\prime}={\frac{2102.1}{G t R}}        (x)

Then, from Eq. (v),

R\theta^{\prime}={\frac{1502.4}{G t R}}          (xi)

Substituting for u′, υ′, and θ′ from Eqs (vii), (x), and (xi), respectively, in Eqs (i)–(iii) gives

\begin{aligned}& q_{12}=3992.9 / R N / mm ,q_{23}=711.3 / R N / mm \\& q_{31}=(1502.4-1894.7 \cos \phi-2102.1 \sin \phi) / R N / mm\end{aligned}
s.20.3.b

Related Answered Questions