A singly symmetrical, thin-walled, closed section beam is built in at one end, where a shear load of 10,000 N is applied as shown in Fig. P.27.3. Calculate the resulting shear flow distribution at the built-in end if the cross-section of the beam remains undistorted by the loading and the shear modulus G and wall thickness t are each constant throughout the section.
Referring to Fig. S.27.3, the shear flows in the walls 12 and 23 are constant, since the walls are straight (see Eq. (27.1)). Choosing O as the origin of axes, from Eq. (27.1),
q=G t\left(p \frac{ d \theta}{ d z}+\frac{ d u}{ d z}\cos \psi+\frac{ d υ}{ d z} \sin \psi\right) (27.1)
q_{12}=G t(\theta^{\prime}R\cos30^{\circ}+u^{\prime}\cos30^{\circ}+υ^{\prime}\sin30^{\circ})i.e.,
q_{12}=G t(0.8666R\theta^{\prime}+0.866u^{\prime}+0.5υ^{\prime}) (i)
q_{23}=G t(0.866R\theta^{\prime}-0.866u^{\prime}+0.5υ^{\prime}) (ii)
q_{31}=G t(R\theta^{\prime}-u^{\prime}\cos\phi-υ^{\prime}\sin\phi) (iii)
Resolving forces vertically,
q_{12} R+q_{23} R-\int_0^\pi q_{31} \sin \phi R d \phi=10000 \sin 30^{\circ}i.e.,
q_{12}+q_{23}-\int_0^\pi q_{31} \sin \phi d\phi=\frac{5000}{R} (iv)
Substituting in Eq. (iv) for q_{12},\,q_{23},\,\mathrm{and}\,\,q_{31} from Eqs (i)–(iii), respectively, gives
R \theta^{\prime}-9.59 υ^{\prime}=-\frac{18656.7}{G t R} (v)
Resolving forces horizontally,
q_{12}\left(R / \tan 30^{\circ}\right)-q_{23}\left(R/ \tan 30^{\circ}\right)-\int_0^\pi q_{31} \cos \phi R d\phi=10000 \cos 30^{\circ}i.e.,
1.732 q_{12}-1.732 q_{23}-\int_0^\pi q_{31} \cos \phi d \phi=\frac{8660.3}{R} (vi)
Substituting in Eq. (vi) for q_{12},\,q_{23},\,\mathrm{and}\,q_{31} from Eqs (i)–(iii), respectively, gives
u^{\prime}=\frac{1894.7}{G t R} (vii)
Taking moments about O,
q_{12}\left(R / \tan 30^{\circ}\right)R+q_{23}\left(R / \tan 30^{\circ}\right)R+\int_0^\pi q_{31} R^2 d \phi=10000 R \cos 30^{\circ}i.e.,
1.732 q_{12}+1.732 q_{23}+\int_0^\pi q_{31} d \phi=\frac{8660.3}{R} (viii)
Substituting in Eq. (viii) for q_{12},\,q_{23},\mathrm{~and~}q_{31} from Eqs (i)–(iii), respectively, gives
R\theta^{\prime}-0.0444υ^{\prime}={\frac{1410.0}{G t R}} (ix)
Now, subtracting Eq. (ix) from (v),
-9.546υ^{\prime}=-{\frac{20.066.7}{G t R}}whence,
υ^{\prime}={\frac{2102.1}{G t R}} (x)
Then, from Eq. (v),
R\theta^{\prime}={\frac{1502.4}{G t R}} (xi)
Substituting for u′, υ′, and θ′ from Eqs (vii), (x), and (xi), respectively, in Eqs (i)–(iii) gives
\begin{aligned}& q_{12}=3992.9 / R N / mm ,q_{23}=711.3 / R N / mm \\& q_{31}=(1502.4-1894.7 \cos \phi-2102.1 \sin \phi) / R N / mm\end{aligned}