Suppose the plant shown in Figure 10.6.1 has the parameter values I = 5 and c = 2 in a consistent set of units in which time is measured in seconds. (a) Determine the smallest value of the gain K_P required so that the steady-state command error will be no greater than 0.05 rad/s if ω_r is a unit-step input. Evaluate the resulting time constant and the steady-state disturbance error for a unit-step disturbance. (b) Obtain the steady-state error due to a unit-ramp command.
a. The error equation is
E(s)=\Omega_r(s)-\Omega(s)
=\left(1-\frac{K_P}{5 s + 2 + K_P}\right) \Omega_r(s)+\frac{1}{5 s + 2 + K_P} T_d(s)
=\left(\frac{5 s + 2}{5 s + 2 + K_P}\right) \Omega_r(s)+\frac{1}{5 s + 2 + K_P} T_d(s)
The steady-state command error for a unit-step command with no disturbance is
e_{s s}= \underset{s \rightarrow 0}{lim} s\left(\frac{5 s + 2}{5 s + 2 + K_P}\right) \frac{1}{s}=\frac{2}{2 + K_P}
The error will be 0.05 rad/s if K_P = 38. The time constant for this value of K_P is
\tau=\frac{I}{c + K_P}=\frac{5}{2 + K_P}=\frac{1}{8} s
The steady-state error due to a unit-step disturbance is
e_{s s}=\underset{s \rightarrow 0}{lim} s\left(\frac{1}{5 s + 2 + K_P}\right) \frac{1}{s}=\frac{1}{2 + K_P}=\frac{1}{40}=0.025 rad / s
If both inputs are applied, the total steady-state error will be
e_{s s} = 0.05 + 0.025 = 0.075 rad/s
and the steady-state speed will be
ω_{s s} = 1 − 0.075 = 0.925 rad/s
Note that we can make the command error, the disturbance error, and the time constant smaller only by making K_P larger than 38, but this increases the maximum required torque and probably the cost of the system.
b. Using Ω_r (s) = 1/s² with the final value theorem, we find the steady-state command error is
e_{s s}=\underset{s \rightarrow 0}{lim} s\left(\frac{5 s + 2}{5 s + 40}\right) \frac{1}{s^2}=\infty
The speed ω(t) never catches up with the command input ω_r (t), and the steady-state error is infinite.