Question 4.7: In an electrically heated, open radiation oven, shown in Fig...

In an electrically heated, open radiation oven, shown in Figure (a), electrical resistance wires are wrapped around a ceramic cylindrical shell. The Jouleheating rate is \dot{S}_{ e,J} . The outer surface of the ceramic is ideally insulated, while the inner surface radiates to a cylindrical workpiece (i.e., object to be heated). The ceramic shell and the workpiece have the same length L. At a given time, the ceramic is at a temperature T_{2} and the workpiece is at T_{1} . The surrounding, to which heat is exchanged through the open ends of the oven, is at T_{3} .
(a) Draw the thermal circuit diagram.
(b) Determine the view factor from the relations and compare with the graphical results of Figure.
(c) Assuming a steady state, determine the fraction of heat transferred to the surroundings.
\dot{S}_{ e,J} = 10^{4} W     , T_{1} = 300^{\circ }C,      T_{3} = 20^{\circ }C,      \epsilon _{r,1} = 0.9,      \epsilon _{r,2} = 0.8,      D_{1} = 3 cm,      D_{2} = 15 cm, and l = 60 cm

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) This is a three-surface enclosure with surface 3 being the two ends with \epsilon _{r,3} = 1 (i.e., an imaginary blackbody surface is used to complete the enclosure). The heat generation \dot{S} _{e,J} leaves surface 2 by radiation, i.e., the outer surface of the ceramic is ideally insulated, Q_{2} = 0, and there is no energy stored in the ceramic (due to the steady-state assumption). The thermal circuit diagram is shown in Figure (b).

(b) There are seven view factors (because F_{2-2} \neq 0 ). Using the reciprocity rule A_{r,i}F_{i-j}=A_{r,j}F_{j-i}, these are reduced to four. Using the summation rule \sum\limits_{j=1}^{n}{F_{i-j}} =1, these are yet reduced to two. These two are F_{2-2} and F_{2-1}. The relations for these are given in Figures (d) and (e) and are

R^{\ast }=\frac{D_{2}}{D_{1}}          ,             l^{\ast }=\frac{2l}{D_{1}}

 

F_{2-2}=F_{2-2}(R^{\ast },l^{\ast })=1-\frac{1}{R^{\ast }} +\frac{2}{\pi R^{\ast }} tan^{-1}\frac{2(R^{\ast 2}-1)^{1/2}}{l^{\ast }}

-\frac{l^{\ast }}{2\pi R^{\ast }}\left\{\frac{(4 R^{\ast 2}+l^{\ast 2})^{1/2}}{l^{\ast }}sin^{-1}\frac{4( R^{\ast 2}-1)+(l^{\ast 2}/ R^{\ast 2})( R^{\ast 2}-2)}{l^{\ast 2}+4( R^{\ast }-1)}-sin^{-1}\frac{R^{\ast 2}-2}{R^{\ast 2}} +\frac{\pi }{2}\left[\frac{(4R^{\ast 2}+l^{\ast })^{1/2}}{l^{\ast }} -1\right] \right\}     Figure (d)

a = ^{l\ast 2} + R^{\ast 2} − 1,     b = l^{\ast 2} − R^{\ast 2} + 1 

 

F_{2-1}=F_{2-1}(R^{\ast },l^{\ast })=\frac{1}{R^{\ast }} -\frac{1}{\pi R^{\ast }}\left\{cos^{-1}\frac{b}{a}-\frac{1}{2l^{\ast }}[(a+2)^{2}-(2R^{\ast })^{2}]^{1/2}cos^{-1}\frac{b}{aR^{\ast }}+b \sin^{-1}\frac{1}{R^{\ast }}-\frac{\pi a}{2} \right\}       Figure (e)

where

F_{2-3} = 1 − F_{2-2} − F_{2-1}          F_{1-3} = 1 − F_{1-2}           summation rule

F_{1-2}=\frac{A_{r,2}}{A_{r,1}} F_{2-1} ,                     F_{3-2}=\frac{A_{r,2}}{A_{r,3}} F_{2-3} ,                  F_{3-1}=\frac{A_{r,1}}{A_{r,3}} F_{1-3}         reciprocity rule

  A_{r,2}=\pi D_{2}l, A_{r,1}=\pi D_{1}l,A_{r,3}=2\left[\frac{\pi }{4}(D_{2}^{2}-D_{1}^{2}) \right]

Using the numerical values, we have

R^{\ast }=\frac{D_{2}}{D_{1}} =\frac{0.15(m)}{0.03(m)} =5         ,l^{\ast }=\frac{2l}{D_{1}} =\frac{2\times 0.60}{0.03}=40 F_{2-2} = 1 − 0.2 + 0.1273 × 0.240 − 1.273(1.031 × 1.180 − 1.16808 + 0.04834) = 0.7079

a = 1, 624,     b = 1,576

F_{2-1} = 0.2 − 0.06366[0.2437 − 0.0125 × (1.626 × 10^{3} × 1.376 + 1,576 × 0.201 − 2.550 × 10^{3} )]

= 0.2 − 0.06366(0.2437 − 0.0125 × 4.152) = 0.1867

F_{2-3} = 1 − 0.7079 − 0.1878 = 0.1054

 

F_{1-2} =\frac{D_{2}}{D_{1}} F_{2-1}=0.9337

 

F_{1-3} = 1 − 0.9337 = 0.06630

 

F_{3-1}=\frac{2D_{1}l}{D_{2}^{2}-D_{1}^{2}} F_{1-3}=0.1105

 

F_{3-2}=\frac{2D_{2}l}{D_{2}^{2}-D_{1}^{2}} F_{2-3}=0.8781

 

F_{3-3} = 1 − F_{3-2} − F_{3-1} = 0.01140

(c) Now, since Q_{2} = 0 and \dot{S} _{1} = \dot{S}_{3} = 0, -Q_{1}+\dot{S}_{1}=Q_{r,1}=\frac{(q_{r,o})_{1}-(q_{r,o})_{2}}{\frac{1}{A_{r,1}F_{1-2}} } +\frac{(q_{r,o})_{1}-(q_{r,o})_{3}}{\frac{1}{A_{r,1}F_{1-3}} } through -Q_{3}+\dot{S}_{3}=Q_{r,3}=\frac{E_{b,3}(T_{3})-(q_{r,o})_{3}}{\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}}\right) _{3}}       ,E_{b,3}(T_{3})=\sigma _{SB}T_{3}^{4} become

Q_{r,1}=-Q_{1}=\frac{(q_{r,o})_{1}-(q_{r,o})_{2}}{\frac{1}{\pi D_{1}lF_{1-2}} } +\frac{(q_{r,o})_{1}-E_{b,3}(T_{3})}{\frac{1}{\pi D_{1}lF_{1-3}} }

 

Q_{r,2}=\dot{S}_{e,J}=10^{4}(W)=\frac{(q_{r,o})_{2}-(q_{r,o})_{1}}{\frac{1}{\pi D_{2}lF_{2-1}} } +\frac{(q_{r,o})_{2}-E_{b,3}(T_{3})}{\frac{1}{\pi D_{2}lF_{2-3}} }

 

-Q_{3}=\frac{E_{b,3}(T_{3})-(q_{r,o})_{1}}{\frac{1}{\frac{\pi}{2} ( D_{2}^{2}-D_{1}^{2})F_{3-1}} } +\frac{E_{b,3}(T_{3})-(q_{r,o})_{2}}{\frac{1}{\frac{\pi}{2} ( D_{2}^{2}-D_{1}^{2})F_{3-2}} }

 

-Q_{1}=\frac{E_{b,1}-(q_{r,o})_{1}}{\frac{1-\epsilon _{r,1}}{\pi D_{1}l\epsilon _{r,1}} }

 

\dot{S}_{e,J}=\frac{E_{b,2}-(q_{r,o})_{2}}{\frac{1-\epsilon _{r,2}}{\pi D_{2}l\epsilon _{r,2}} }         ,E_{b,2}=\sigma _{SB}T_{2}^{4} 

Note that surface 3 is blackbody and from -Q_{3}+\dot{S}_{3}=Q_{r,3}=\frac{E_{b,3}(T_{3})-(q_{r,o})_{3}}{\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}}\right) _{3}}       ,E_{b,3}(T_{3})=\sigma _{SB}T_{3}^{4} with (R_{r,\epsilon })_{3} = 0, we have

(q_{r,o})_{3} = E_{b,3} = \sigma _{SB}T_{3}^{4}

and have used this above for (q_{r,o})_{3} .

We cannot simply solve for one unknown at a time by successive substitutions. The simultaneous solution requires iterations or use of a solver, for example MATLAB.
We now solve for the six unknowns (q_{r,o})_{1}, (q_{r,o})_{2}, (q_{r,o})_{3}, T_{1}, Q_{2}, and Q_{3} and the numerical results are

(q_{r,o})_{1} = 1.789 × 10^{4} W/m^{2}
(q_{r,o})_{2} = 1.327 × 10^{5} W/m^{2}
(q_{r,o})_{3} = 4.179 × 10^{2} W/m^{2}
T_{2} = 983.9 K
Q_{1} = 5.994 × 10^{3} W
Q_{3} = 4.006 × 10^{3} W.

11a
11b

Related Answered Questions