Question 9.19: The mass moments of inertia of a body about the principal bo......

The mass moments of inertia of a body about the principal body frame axes with origin at the center of mass G are

A=1000  kg \cdot m ^2 \quad B=2000  kg \cdot m ^2 \quad C=3000  kg \cdot m ^2                   (a)

The Euler angles in radians are given as functions of time in seconds as follows:

\begin{aligned}& \phi=2 t e^{-0.05 t} \\& \theta=0.02+0.3 \sin 0.25 t \\& \psi=0.6 t\end{aligned}                (b)

At t = 10 s, find
(a) The net moment about G and
(b) The components \alpha_X, \alpha_Y, \text { and } \alpha_Z of the absolute angular acceleration in the inertial frame.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) We must use Euler’s equations (Eqns (9.72)) to calculate the net moment, which means we must first obtain \omega_x, \omega_y, \omega_z, \dot{\omega}_x, \dot{\omega}_y, \text { and } \dot{\omega}_z . Since we are given the Euler angles as a function of time, we can compute their time derivatives and then use Eqn (9.115) to find the body frame angular velocity components and their derivatives. Starting with Eqn (b), we get

\boxed{\left. M _{\text {net }}=\dot{ H }\right)_{\text {rel }}+ \omega \times H}                            (9.72a)

\begin{aligned}& M_{x_{ net }}=A \dot{\omega}_x+(C-B) \omega_y \omega_z \\& M_{y_{ net }}=B \dot{\omega}_y+(A-C) \omega_z \omega_x \\& M_{z_{ net }}=C \dot{\omega}_z+(B-A) \omega_x \omega_y\end{aligned}                      (9.72b)

\begin{aligned}& \omega_x=\omega_p \sin \theta \sin \psi+\omega_n \cos \psi \\\\& \omega_y=\omega_p \sin \theta \cos \psi-\omega_n \sin \psi \\\\& \omega_z=\omega_s+\omega_p \cos \theta\end{aligned}                                   (9.115)

\begin{aligned}& \omega_p=\cfrac{ d \phi}{ d t}=\cfrac{ d }{ d t}\left(2 t e^{-0.05 t}\right)=2 e^{-0.05 t}-0.1 t e^{-0.05 t} \\\\& \dot{\omega}_p=\cfrac{ d \omega_p}{ d t}=\cfrac{ d }{ d t}\left(2 e^{-0.05 t}-0.1 e^{-0.05 t}\right)=-0.2 e^{-0.05 t}+0.005 t e^{-0.05 t}\end{aligned}

Proceeding to the remaining two Euler angles leads to

\begin{aligned}& \omega_n=\cfrac{ d \theta}{ d t}=\cfrac{ d }{ d t}  (0.02+0.3 \sin 0.25 t)=0.075 \cos 0.25 t \\\\& \dot{\omega}_n=\cfrac{ d \omega_n}{ d t}=\cfrac{ d }{ d t}  (0.075 \cos 0.25 t)=-0.01875 \sin 0.25 t \\\\& \omega_s=\cfrac{ d \psi}{ d t}=\cfrac{ d }{ d t}  (0.6 t)=0.6 \\\\& \dot{\omega}_s=\cfrac{ d \omega_{ s }}{ d t}=0\end{aligned}

Evaluating all these quantities, including those in Eqn (b), at t = 10 s yields

\begin{array}{lll}\phi=335.03^{\circ} & \omega_p=0.60653  rad / s & \dot{\omega}_p=-0.09098  rad / s ^2 \\\theta=11.433^{\circ} & \omega_n=-0.060086  rad / s & \dot{\omega}_n=-0.011221  rad / s ^2 \\\psi=343.77 & \omega_s=0.6  rad / s & \dot{\omega}_s=0\end{array}                  (c)

Equation (9.115) relates the Euler angle rates to the angular velocity components,

\begin{aligned}& \omega_x=\omega_p \sin \theta \sin \psi+\omega_n \cos \psi \\& \omega_y=\omega_p \sin \theta \cos \psi-\omega_n \sin \psi \\& \omega_z=\omega_s+\omega_p \cos \theta\end{aligned}                      (d)

Taking the time derivative of each of these equations in turn leads to the following three equations:

\begin{aligned}& \dot{\omega}_x=\omega_p \omega_n \cos \theta \sin \psi+\omega_p \omega_s \sin \theta \cos \psi-\omega_n \omega_s \sin \psi+\dot{\omega}_p \sin \theta \sin \psi+\dot{\omega}_n \cos \psi \\& \dot{\omega}_y=\omega_p \omega_n \cos \theta \cos \psi-\omega_p \omega_s \sin \theta \sin \psi-\omega_n \omega_s \cos \psi+\dot{\omega}_p \sin \theta \cos \psi-\dot{\omega}_n \sin \psi \\& \dot{\omega}_{\text{z}}=-\omega_n \omega_n \sin \theta+\dot{\omega}_n \cos \theta+\dot{\omega}_s\end{aligned}                    (e)

Substituting the data in Eqn (c) into Eqns (d) and (e) yields

\begin{array}{lll}\omega_x=-0.091286  rad / s & \omega_y=0.098649  rad / s & \omega_z=1.1945  rad / s \\\dot{\omega}_x=0.063435 rad / s ^2 & \dot{\omega}_y=2.2346 \times 10^{-5}  rad / s ^2 & \dot{\omega}_z=-0.08195  rad / s ^2\end{array}                       (f)

With Eqns (a) and (f) we have everything we need for Euler’s equations, namely,

\begin{aligned}& M_{x_{\text {net }}}=A \dot{\omega}_x+(C-B) \omega_y \omega_z \\& M_{y_{\text {net }}}=B \dot{\omega}_y+(A-C) \omega_z \omega_x \\& M_{z_{\text {net }}}=C \dot{\omega}_z+(B-A) \omega_x \omega_y\end{aligned}

from which we find

\boxed{\begin{aligned}& M_{x_{\text {net }}}=181.27  N \cdot m \\& M_{y_{\text {net }}}=218.12  N \cdot m \\& M_{z_{\text {net }}}=-254.86  N \cdot m\end{aligned}}

(b) Since the comoving xyz frame is a body frame, rigidly attached to the solid, we know from Eqn (9.74) that

\left\{\begin{array}{c}\dot{\omega}_x \\\dot{\omega}_y \\\dot{\omega}_z\end{array}\right\}=[ Q ]_{X \text{x}}\left\{\begin{array}{l} d \omega_X / d t \\d \omega_Y / d t \\d \omega_Z / d t\end{array}\right\}                                      (9.74)

\left\{\begin{array}{c}\alpha_X \\\alpha_Y \\\alpha_Z\end{array}\right\}=[ Q ]_{\text{x} X}\left\{\begin{array}{c}\dot{\omega}_X \\\dot{\omega}_y \\\dot{\omega}_z\end{array}\right\}                                 (g)

In other words, the absolute angular acceleration and the relative angular acceleration of the body are thesame. All we have to do is project the components of relative acceleration in Eqn (f) onto the axes of the inertial frame. The required orthogonal transformation matrix is given in Eqn (9.105),

[ Q ]_{\text{x} X}=\left[\begin{array}{ccc}-\sin \phi \cos \theta \sin \psi+\cos \phi \cos \psi & -\sin \phi \cos \theta \cos \gamma-\cos \phi \sin \psi & \sin \phi \sin \theta \\\cos \phi \cos \theta \sin \psi+\sin \phi \cos \psi & \cos \phi \cos \theta \cos \psi-\sin \phi \sin \psi & -\cos \phi \sin \theta \\\sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta\end{array}\right]

Upon substituting the numerical values of the Euler angles from Eqn (c), this becomes

[ Q ]_{\text{x} X}=\left[\begin{array}{ccc}0.75484 & 0.65055 & -0.083668 \\-0.65356 & 0.73523 & -0.17970 \\-0.055386 & 0.19033 & 0.98016\end{array}\right]

Substituting this and the relative angular velocity rates from Eqn (f) into Eqn (g) yields

\left\{\begin{array}{l}\alpha_X \\\alpha_Y \\\alpha_Z\end{array}\right\}=\left[\begin{array}{ccc}0.75484 & 0.65055 & -0.083668 \\-0.65356 & 0.73523 & -0.17970 \\-0.055386 & 0.19033 & 0.98016\end{array}\right]\left\{\begin{array}{c}0.063435 \\2.2345 \times 10^{-5} \\-0.08195\end{array}\right\}=\boxed{\left\{\begin{array}{c}0.054755 \\-0.026716 \\-0.083833\end{array}\right\}  \left( rad / s ^2\right)}

Related Answered Questions

Question: 9.12

Verified Answer:

Since the comoving frame is rigidly attached to th...
Question: 9.10

Verified Answer:

From Example 9.5, \left[ I _A\right]=\left[...