Question 4.12: Electrically heated range-top elements glow when they are in...

Electrically heated range-top elements glow when they are in high-power settings. The elements have electrical resistance wires that are electrically insulated from the element covers (i.e., casing) by a dielectric filler (e.g., oxide or monoxide ceramic). This ceramic should have a very low electrical conductivity and yet be able to conduct the heat from the heating element to the casing. Oxide ceramics have a low σe\sigma _{e} and also low k. Nonoxide ceramics (i.e., nitrates such as aluminum nitrite) have low σe\sigma _{e} , but high k. The melting temperature of the resistance wire and the dielectric are also important. The heating element is a coiled wire in a cylindrical form, as shown in Figure (a). All the Joule heating leaves through surface 1, i.e., Qk,H1=S˙e,JQ_{k,H-1} = \dot{S}_{ e,J}.
(a) Draw the thermal circuit diagram.
(b) Determine the temperature THT_{H}.
(c) Determine the temperature drop THT1T_{H} − T_{1}.

 ϵr,1=0.9  ,F13=1 ,  T3=20C ,DH=2mm ,D1=10mm,L=30cm, Ar,3Ar,1  ,k1=1.5W/mK,  and  S˙e,J=500W  \epsilon _{r,1} = 0.9   , F_{1−3} = 1  ,   T_{3} = 20^{\circ }C  , D_{H} = 2 mm  , D_{1} = 10 mm , L = 30 cm ,  A_{r,3} \gg A_{r,1}   , k_{1} = 1.5 W/m-K,    and   \dot{S}_{ e,J} = 500 W
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram of the heat flow is shown in Figure (b). Here we are given the heat flow rate QH1Q_{H-1}. From Figure (b), we have

QH1=THT1Rk,H1=Qr,13=Eb,1Eb,3(Rr,ϵ)1+(Rr,F)13+(Rr,ϵ)3=S˙e,J Q_{H-1}=\frac{T_{H}-T_{1}}{R_{k,H-1}} =Q_{r,1-3}=\frac{E_{b,1}-E_{b,3}}{(R_{r,\epsilon })_{1}+(R_{r,F})_{1-3}+(R_{r,\epsilon })_{3}} =\dot{S}_{e,J}

(b) Here we first determine Eb,1=σSBT14E_{b,1} = \sigma _{SB}T^{ 4}_{ 1} , by solving the above for Eb,1E_{b,1}, i.e.,

 Eb,1=σSBT14=Eb,3+S˙e,J[(Rr,ϵ)1+(Rr,F)13+(Rr,ϵ)3].  E_{b,1} = \sigma_{SB}T^{ 4}_{1} = E_{b,3} + \dot{S}_{ e,J}[(R_{r,\epsilon })_{1} + (R_{r,F} )_{1-3} + (R_{r,\epsilon })_{3}].

The radiation resistances are

(Rr,ϵ)1=(1ϵrArϵr)1     ,Ar,1=πD1L(R_{r,\epsilon })_{1}=\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}} \right) _{1}         ,A_{r,1}=\pi D_{1}L

 

(Rr,F)13=1Ar,1F13,    F13=1 (R_{r,F })_{1-3}=\frac{1}{A_{r,1}F _{1-3}} ,        F_{1-3}=1

 

(Rr,ϵ)3=(1ϵrArϵr)3      ,Ar,3Ar,1 (R_{r,\epsilon })_{3}=\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}} \right) _{3}            ,A_{r,3}\gg A_{r,1}

 

Rr,=1Ar,1(1ϵr,1ϵr,1+1+Ar,1Ar,31ϵr,3ϵr,3)=1Ar.1(1ϵr,11+1)=1Ar,1ϵr,1 R_{r,\sum }=\frac{1}{A_{r,1}}\left(\frac{1-\epsilon _{r,1}}{\epsilon _{r,1}}+1+\frac{A_{r,1}}{A_{r,3}}\frac{1-\epsilon _{r,3}}{\epsilon _{r,3}} \right) =\frac{1}{A_{r.1}}\left(\frac{1}{\epsilon _{r,1}}-1+1 \right) =\frac{1}{A_{r,1}\epsilon _{r,1}}

Then we have

σSBT14=Eb,3+S˙e,JRr, \sigma _{SB}T_{1}^{4}=E_{b,3}+\dot{S}_{e,J}R_{r,\sum }

Solving for T1T_{1}, we have

T1=(Eb,3+S˙e,JRe,σSB)1/4 T_{1}=\left(\frac{E_{b,3}+\dot{S}_{e,J}R_{e,\sum }}{\sigma _{SB}} \right) ^{1/4} 

Next, we use QH,1+QH,2=S˙e,JQ_{H,1}+Q_{H,2}=\dot{S}_{e,J} and QH,1=Qk,H1=Qr,13=THT1Rk,H1=Eb,1Eb,3Rr,=Eb,1Eb,3(Rr,ϵ)1+(Rr,F)13+(Rr,ϵ)3Q_{H,1}=Q_{k,H-1}=Q_{r,1-3}=\frac{T_{H}-T_{1}}{R_{k,H-1}} =\frac{E_{b,1}-E_{b,3}}{R_{r,\sum }}=\frac{E_{b,1}-E_{b,3}}{(R_{r,\epsilon })_{1}+(R_{r,F })_{1-3}+(R_{r,\epsilon })_{3}} again, but this time we solve for THT_{H}, i.e.,

TH=T1+S˙e,JRk,H1T_{H} = T_{1} + \dot{S}_{ e,J}R_{k,H-1},

where Rk,H1R_{k,H-1} is for a cylindrical shell and is given in Table as

Rk,H1=ln(D1/DH)2πLk1R_{k,H-1}=\frac{ln(D_{1}/D_{H})}{2\pi Lk_{1}}           Table

Now substituting for T1T_{1} and Rk,H1R_{k,H-1}, in the above expression for THT_{H}, we have

TH=[Eb,3+S˙e,J1Ar,1ϵr,1σSB]1/4+S˙e,Jln(D1/DH)2πLk1 T_{H}=\left[\frac{E_{b,3}+\dot{S}_{e,J}\frac{1}{A_{r,1}\epsilon _{r,1}} }{\sigma _{SB}} \right] ^{1/4}+\dot{S}_{e,J}\frac{ln(D_{1}/D_{H})}{2\pi Lk_{1}}

(c) The difference in temperature, THT1T_{H} − T_{1}, is found from the first equation written above, i.e.,

THT1=S˙e,JRk,H1T_{H} − T_{1} = \dot{S}_{ e,J}R_{k,H-1}

Now using the numerical values, we have

TH={5.670×108(W/m2K4)×(293.15)4(K)45.670×108(W/m2K4)+5×102(W)[1π×0.01(m)×0.3(m)×0.9]5.670×108(W/m2K4)}1/4 T_{H}=\left\{\frac{5.670\times 10^{-8}(W/m^{2}-K^{4})\times (293.15)^{4}(K)^{4}}{5.670\times 10^{-8}(W/m^{2}-K^{4})} +\frac{5\times 10^{2}(W)\left[\frac{1}{\pi \times 0.01(m)\times 0.3(m)\times 0.9} \right] }{5.670\times 10^{-8}(W/m^{2}-K^{4})} \right\} ^{1/4}

 

+5×102(W)ln(0.01/0.002)2π×0.3(m)×1.5(W/mk) +5\times 10^{2}(W) \frac{ln(0.01/0.002)}{2\pi \times 0.3(m)\times 1.5(W/m-k)}

 

=[4.187×102+5×102×117.9(1/m2)5.670×108(W/m2K4)]1/4(K) =\left[\frac{4.187\times 10^{2}+5\times 10^{2}\times 117.9(1/m^{2})}{5.670\times 10^{-8}(W/m^{2}-K^{4})} \right] ^{1/4}(K)

 

+5×102(W)×0.5691(K/W) +5\times 10^{2}(W)\times 0.5691(K/W)

 

TH=(4.187×102+5.895×1045.670×108)1/4(K)+(5×102×0.5691)(K) T_{H}=\left(\frac{4.187\times 10^{2}+5.895\times 10^{4}}{5.670\times 10^{-8}} \right) ^{1/4}(K)+(5\times 10^{2}\times 0.5691)(K)

 

=1.011×103(K)+2.846×102(K)=1,296K =1.011\times 10^{3}(K)+2.846\times 10^{2}(K)=1,296K

Solving for the temperature difference, we have

THT1=5×102(W)×0.5691(K/W)=284.6KT_{H} − T_{1} = 5 × 10^{2} (W) × 0.5691(K/W) = 284.6 K

 

T1=1,011K T_{1} = 1,011 K
b
Capture

Related Answered Questions