(a) The thermal circuit diagram is shown in Figure (b). The energy equation is the surface energy equation , which reduces to
Q \mid_{A}= Q_{s} + \left\langle Q_{ku}\right\rangle _{L} = 0
(b) The surface-convection heat transfer rate is given by A_{ku}=Lw, \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }), i.e.,
\left\langle Q_{ku}\right\rangle _{L} =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty })
where A_{ku} = L^{2}.
The Nusselt number is related to the Reynolds number Re_{L}. The Reynolds number is given by Re_{L}\equiv \frac{F_{u}}{F_{\mu }} \equiv \frac{u_{f,\infty }L}{v_{f}} ,v_{f}=(\mu /\rho )_{f} as
Re_{L}=\frac{u_{f,\infty }L}{v_{f}}
For water we use Table, and find that for T = 330 K
ν_{f} = 505 × 10^{−9}m^{2}/s Table
k_{f} = 0.648 × W/m-K Table
Pr = 3.22 Table
Then
(i) Re_{L}=\frac{0.5(m/s) × 0.2(m)}{505 × 10^{−9} (m^{2}/s)} = 1.980 × 10^{5} < Re_{L,t} = 5 × 10^{5} laminar-flow regime
(ii) Re_{L}=\frac{5(m/s) × 0.2(m)}{505 × 10^{−9} (m^{2}/s)} = 1.980 × 10^{6} > Re_{L,t} = 5 × 10^{5} turbulent-flow regime
Based on this magnitude for Re_{L}, we use \left\langle Nu\right\rangle _{L}=0.332Pr^{1/3}\left(\frac{u_{f,\infty }}{v_{f}} \right) ^{1/2}\int_{0}^{L}{x^{-1/2}dx}=2Nu_{L} =0.664Re_{L}^{1/2}Pr^{1/3}=\frac{L}{A_{ku}\left\langle R_{ku}\right\rangle _{L}k_{f}} ,Re_{L}\leq Re_{L,t}=5\times 10^{5} and\left\langle\overline{Nu} \right\rangle _{L}\equiv \left\langle Nu\right\rangle _{L}=(0.037Re^{4/5}_{L}-871)Pr^{1/3} for 5\times 10^{5}\lt Re_{L}\lt 10^{8}, and 0.6\lt Pr\lt 60 for \left\langle Nu\right\rangle _{L} i.e.,
(i) \left\langle Nu\right\rangle _{L}= 0.664Re^{1/2} _{L} Pr^{1/3} = 0.664(1.980 × 10^{5} )^{ 1/2} (3.22)^{1/3}
= 436.1
(ii) \left\langle Nu\right\rangle _{L}= (0.037Re^{4/5}_{L} − 871)Pr^{1/3}
=[(0.037(1.980 × 10^{6} )^{ 4/5} − 871)](3.22)^{1/3}
= 4.666 × 10^{3} average laminar-turbulent Nusselt number.
Now returning to \left\langle Q_{ku}\right\rangle _{L} , we have
(i) \left\langle Q_{ku}\right\rangle _{L} = (0.2)^{2} (m^{2}) × 436.1 × 10^{3} ×\frac{0.648(W/m-K)}{0.2(m)} × (95 − 20)(K)
= 4.239 × 10^{3} W
(ii) \left\langle Q_{ku}\right\rangle _{L} =(0.2)^{2} (m^{2}) × 4.666 × 10^{3} ×\frac{0.648(W/m-K)}{0.2(m)}× (95 − 20)(K)
= 4.535 × 10^{4} W
(c) The thermal boundary-layer thickness is given by \frac{\delta _{v}}{\delta _{\alpha }} =Pr^{1/3} ,\delta _{v}=5.0\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}=5.0LRe_{L}^{-1/2}, \delta _{\alpha }=5.0\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}\left(\frac{\alpha _{f}}{v_{f}} \right) ^{1/3} and \overline{\delta } _{v}\equiv \delta _{v}0.37LRe_{L}^{-1/5}=0.37\left(\frac{v_{f}}{u_{f,\infty }} \right) ^{1/5}L^{4/5}, \frac{\overline{\delta }_{v} }{\overline{\delta }_{\alpha } } \simeq 1 as
(i) \delta _{\alpha }=5\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}Pr^{-1/3}
=5\left[\frac{505 × 10^{−9} (m/s) × 0.2(m)}{0.5(m/s)} \right] ^{1/2}(3.22)^{-1/3}
= 1.522 × 10^{−3} m = 1.522 mm
(ii) \delta _{\alpha }=\delta _{v }=0.37\left(\frac{v_{f}}{u_{f,\infty }} \right) ^{1/5}L^{4/5}
=0.37\left[\frac{505 × 10^{−9}(m^{2}/s)}{5(m/s)} \right] ^{1/5}(0,2)^{4/5}(m)^{4/5}= 4.073 × 10^{−3} m
= 2.758 mm.
(d) The average surface-convection resistance \left\langle R_{ku}\right\rangle _{L} is found from A_{ku}=Lw, \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }), i.e.,
(i) \left\langle R_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle Q_{ku}\right\rangle_{L} } =\frac{(95 − 20)(^{\circ }C)}{4.239 × 10^{3} (W)} = 0.01769^{\circ }C/W
A_{ku}\left\langle R_{ku}\right\rangle _{L} = (0.2)^{2} (m^{2}) × 0.01769(^{\circ}C/W) = 7.077 × 10^{−4\circ}C/(W/m^{2})
(ii) \left\langle R_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle Q_{ku}\right\rangle_{L} } =\frac{(95 − 20)(^{\circ }C)}{4.535 × 10^{4} (W)} = 0.001654^{\circ }C/W
A_{ku}\left\langle R_{ku}\right\rangle _{L}= (0.2)^{2} (m^{2}) × 0.001654(^{\circ}C/W) = 6.615 × 10^{−5\circ}C/(W/m^{2})
Figure (b) shows the average heat flux vector \left\langle q_{ku}\right\rangle _{L}, which is perpendicular to the surface (between Ts is uniform over the surface). The thermal circuit diagram is also shown