Question 3.306E: An insulated cylinder is divided into two parts of 10 ft^3 e...

An insulated cylinder is divided into two parts of 10 ft ^{3} each by an initially locked piston. Side A has air at 2 atm, 600 R and side B has air at 10 atm, 2000 R as shown in Fig. P3.151. The piston is now unlocked so it is free to move, and it conducts heat so the air comes to a uniform temperature T_{ A }=T_{ B }. Find the mass in both A and B and also the final T and P.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. A + B .   Then  { }_{1} Q _{2}=\emptyset,{ }_{1} W _{2}=0.

Force balance on piston:  P _{ A } A = P _{ B } A,  so final state in A and B is the same.

State 1A:  u _{ A 1}=102.457   Btu / lbm;

m _{ A }=\frac{ PV }{ RT }=\frac{29.4   psi \times 10   ft ^{3} \times 144   in ^{2} / ft ^{2}}{53.34   lbf – ft / lbm – R \times 600  R }=1.323   lbm

 

State 1B:  u _{ B 1}=367.642   Btu / lbm;

m_{B}=\frac{P V}{R T}=\frac{147   psi \times 10   ft ^{3} \times 144   in ^{2} / ft ^{2}}{53.34   lbf – ft / lbm – R \times 2000  R }=1.984   lbm

 

For chosen C.V.  { }_{1} Q _{2}=0,{ }_{1} W _{2}=0  so the energy equation becomes

 

m _{ A }\left( u _{2}- u _{1}\right)_{ A }+ m _{ B }\left( u _{2}- u _{1}\right)_{ B }=0

 

\left(m_{A}+m_{B}\right) u_{2}=m_{A} u_{A 1}+m_{B} u_{B 1}

 

= 1.323 × 102.457 + 1.984 × 367.642 = 864.95 Btu

 

u _{2}=864.95   Btu / 3.307   lbm =261.55   Btu / lbm \Rightarrow T _{2}=1475  R

 

P = m _{ tot } RT _{2} / V _{ tot }=\frac{3.307   lbm \times 53.34   lbf – ft / lbm – R \times 1475   R }{20   ft ^{3} \times 144   in ^{2} / ft ^{2}}

 

=90.34   lbf / in ^{2}

 

 

Capture

Related Answered Questions