Question 6.5: Again, consider the cooling of the square plastic sheet of E...

Again, consider the cooling of the square plastic sheet of Examples 6.3 and 6.4. Here we place the hot plastic sheet vertically, and on one side of it we have a body of water that is otherwise quiescent, i.e., zero far-field velocity u_{f,∞} = 0, and with a far-field temperature T_{f,∞}. This is depicted in Figure(a). The plastic surface is at T_{s}. The sheet dimension is again L × L. Assume that the sheet can be treated as a vertical, semi-infinite plate (i.e., neglecting the end effect due to finite length) and treat the thermobuoyant flow and heat transfer accordingly.

(a) Draw the thermal circuit diagram.
(b) Determine the rate of surface-convection cooling.
(c) Determine the average surface-convection resistance \left\langle R_{ku}\right\rangle _{L}.
(d) Comment on the comparison between this method of cooling versus parallel and perpendicular forced flows.
L = 20 cm,   T_{s} = 95^{\circ }C   , T_{f,∞} = 20^{\circ }C.
Evaluate the water properties at T = 330 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is shown in Figure (b).
(b) The rate of surface-convection heat transfer is again given by A_{ku}=Lw,       \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }) as

\left\langle Q_{ku}\right\rangle _{L} =A_{ku}\left\langle q_{ku}\right\rangle_{L} =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty })

Where

A_{ku} = L^{2}

For an isothermal, semi-infinite plate, we have the relation for \left\langle Nu\right\rangle _{L} given by

\left\langle Nu\right\rangle _{L}=(\left\langle Nu_{L,l}\right\rangle ^{6}+\left\langle Nu_{L,t}\right\rangle ^{6})^{1/6},

 

\left\langle Nu_{L,l}\right\rangle=\frac{2.8}{ln[1+2.8/(a_{1}Ra_{L}^{1/4})]} ,

 

\left\langle Nu_{L,t}\right\rangle=\frac{0.13Pr^{0.22}}{(1+0.61Pr^{0.81})^{0.42}} Ra_{L}^{1/3} ,

 

a_{1}=\frac{4}{3}\frac{0.503}{[1+(0.492/Pr)^{9/16}]^{4/9}}

and the Rayleigh number Ra_{L}, from Ra_{L}\equiv Gr_{L}Pr=\frac{g\beta _{f}(T_{s}-T_{f,\infty })L^{3}}{v_{f}\alpha _{f}} is

Ra_{L}=\frac{g\beta _{f}(T_{s}-T_{f,\infty })L^{3}}{v_{f}\alpha _{f}}

Using Table for water (at T = 330 K), and g = 9.807 m/s^{2}, we have

\beta _{f} = 0.000273   1/K                        Table  (at T = 310 K, the closest data available)
k_{f} = 0.648 W/m-K                     Table
\alpha _{f} = 1.54 × 10^{−7} m^{2}/s                Table
ν_{f} = 5.05 × 10^{−7} m^{2}/s                   Table
Pr = 3.22           Table .
Then

Ra_{L}=\frac{9.807(m/s^{2}) × 0.000273(1/K) × (95 − 20)(K) × (0.2)^{3} (m^{3} )}{5.05 × 10^{−7} (m^{2}/s) × 1.54 × 10^{−7} (m^{2}/s)}

 

= 2.066 × 10^{10}        turbulent, thermobuoyant flow.

The \left\langle Nu\right\rangle _{L}  relation \left\langle Nu\right\rangle _{L}=(\left\langle Nu_{L,l}\right\rangle ^{6}+\left\langle Nu_{L,t}\right\rangle ^{6})^{1/6}        ,\left\langle Nu_{L,l}\right\rangle=\frac{2.8}{ln[1+2.8/(a_{1}Ra_{L}^{1/4})]}       ,\left\langle Nu_{L,t}\right\rangle=\frac{0.13Pr^{0.22}}{(1+0.61Pr^{0.81})^{0.42}} Ra_{L}^{1/3}       ,a_{1}=\frac{4}{3}\frac{0.503}{[1+(0.492/Pr)^{9/16}]^{4/9}}   is

\left\langle Nu\right\rangle _{L}=[( Nu_{L,l}) ^{6}+( Nu_{L,t}) ^{6}]^{1/6}

 

\left\langle Nu_{L,l}\right\rangle=\frac{2.8}{ln(1+2.8/a_{1}Ra^{1/4})} 

 

\left\langle Nu_{L,t}\right\rangle=\frac{0.13Pr^{0.22}}{(1+0.61Pr^{0.81})^{0.42}} Ra_{L}^{1/3} 

 

a_{1}=\frac{4}{3}\frac{0.503}{[1+(0.492/Pr)^{9/16}]^{4/9}}  

Then

a_{1} = 0.5874

 

\left\langle Nu_{L,l}\right\rangle=\frac{2.8}{ln [ 1 + 2.8/0.5874(2.066 × 10^{10})^{1/4}]}

= 224.1

\left\langle Nu_{L,t}\right\rangle=\frac{0.13×(3.22)^{0.22}}{[1 + 0.61(3.22)^{0.81}]^{ 0.42} } (2.066 × 10^{10})^{ 1/3}

 

= \frac{0.1681 }{1.487} × 2.744 × 10^{3} = 310.0 

 

\left\langle Nu\right\rangle _{L}=[( 224.1) ^{6}+( 310.0) ^{6}]^{1/6} 

= 317.0

The surface-convection heat transfer rate is

  \left\langle Q_{ku}\right\rangle _{L}= (0.2)^{2} (m^{2} ) × 317.0 × \frac{0.648(W/m-K) }{0.2(m)} × (95 − 20)(K)

= 3, 081 W

(c) The average surface-convection resistance \left\langle R_{ku}\right\rangle _{L} is given by A_{ku}=Lw,       \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }), i.e.,

\left\langle R_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle Q_{ku}\right\rangle_{L} }=\frac{(95 − 20)(^{\circ }C)}{3.081 × 10^{3} (W)} = 0.02434^{\circ }C/W

 

A_{ku}\left\langle R_{ku}\right\rangle _{L} = (0.2)^{2} (m^{2}) × 0.02434(^{\circ }C/W) = 9.737 × 10^{−4\circ } C/(W/m^{2}).

(d) Comparing thermobuoyant, forced-parallel, and forced-perpendicular flows, the thermobuoyant flow is the least effective (\left\langle R_{ku}\right\rangle _{L} = 0.02434^{\circ}C/W), followed by laminar and turbulent forced parallel (\left\langle R_{ku}\right\rangle _{L} = 0.001769^{\circ}C/W and \left\langle R_{ku}\right\rangle _{L} = 0.001654^{\circ}C/W), with the single-jet perpendicular flow being the most effective (\left\langle R_{ku}\right\rangle _{L}= 0.00003976^{\circ}C/W) among them.

b
23_4

Related Answered Questions