Question 6.7: Again, consider the plastic sheet of Example 6.5, and here a...

Again, consider the plastic sheet of Example 6.5, and here allow for the surface-convection cooling by evaporation by exposing one side of the plastic (placed horizontally) sheet to a saturated water pool, as shown in Figure (a). At one atmosphere pressure, the boiling temperature of the water is found from Table and is T_{f,∞} = T_{lg} = 373.15 K. The plastic sheet is at T_{s} = 115^{\circ}C= 388.15 K. Assume that the surface superheat T_{s} − T_{lg} = 15^{\circ}C is sufficient to cause nucleate boiling of the plastic surface (which is a reasonable assumption).

(a) Draw the thermal circuit diagram.
(b) Use A_{ku}\left\langle R_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle q_{ku}\right\rangle _{L}} =a_{s}^{3}\frac{\Delta h_{lg}^{2}}{\mu _{l}c_{p,l}^{3}(T_{s}-T_{lg})^{2}} \left(\frac{\sigma }{g\Delta \rho _{lg}} \right) ^{1/2}Pr_{l}^{n}       , n=3 (water)      ,n=5.1(all    other    fluids) to determine the rate of surface-convection cooling.
(c) Again using A_{ku}\left\langle R_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle q_{ku}\right\rangle _{L}} =a_{s}^{3}\frac{\Delta h_{lg}^{2}}{\mu _{l}c_{p,l}^{3}(T_{s}-T_{lg})^{2}} \left(\frac{\sigma }{g\Delta \rho _{lg}} \right) ^{1/2}Pr_{l}^{n}       , n=3 (water)      ,n=5.1(all    other    fluids), determine the average surface-convection resistance \left\langle R_{ku}\right\rangle_{L}.
L = 0.2 m    , p_{g} = 1.013 × 10^{5} Pa.
For lack of specific data, take a_{s} from Table 6.2, that corresponding to the water-copper pair.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is shown in Figure (b).
(b) The rate of surface-convection heat transfer is given by A_{ku}\left\langle R_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle q_{ku}\right\rangle _{L}} =a_{s}^{3}\frac{\Delta h_{lg}^{2}}{\mu _{l}c_{p,l}^{3}(T_{s}-T_{lg})^{2}} \left(\frac{\sigma }{g\Delta \rho _{lg}} \right) ^{1/2}Pr_{l}^{n}       , n=3 (water)      ,n=5.1(all    other    fluids) as

\left\langle Q_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle R_{ku}\right\rangle _{L}} =(T_{s}-T_{lg})\left\langle Nu\right\rangle_{L}\frac{k_{l}}{L}A_{ku}= \frac{\mu _{l}c_{p,l}^{3}(T_{s}-T_{lg})^{3}}{a_{s}^{3}\Delta h_{lg}^{2}[\sigma /(g\Delta \rho _{lg})]^{1/2}Pr_{l}^{3}}A_{ku}

Where

A_{ku}=L^{2}

From Table, we have

\mu _{l} = 277.5 × 10^{−6} Pa-s         Table
c_{p,l} = 4,220 J/kg-K       Table
\Delta h_{lg} = 2,257 × 10^{3} J/kg           Table
\sigma = 0.05891 N/m              Table
\Delta \rho _{lg} = \rho_{ l} −\rho_{ g} = (958.3 − 0.596)(kg/m^{3} ) = 957.7 kg/m^{3}             Table
Pr_{l} = 1.72                           Table

We take the standard gravitational constant,    g = g_{o} = 9.807 m/s^{2}   . Also, from Table, we have    a_{s} = 0.013 . Then

\left\langle Q_{ku}\right\rangle _{L}=\frac{277.53×10^{−6} (kg/m-s)×(4,220)^{3} (J/kg-K)^{3} (388.15−373.15)^{3} (K)^{3}}{(0.013)^{3} (2,256.7×10^{3} )^{2} (J/kg)^{2}\left[\frac{(0.05891)(N/m)}{(9.807)(m/s^{2} )×(957.7)(kg/m^{3} )} \right]^{1/2}(1.72)^{3} }

 

=\frac{7.039 × 10^{11}}{1.119 × 10^{7} × (6.272 × 10^{−6} ) ^{1/2} (1.72)^{3}} × (0.2)^{2}

 

= 1.971 × 10^{4} W 

Note that the unit of (\sigma /g\Delta \rho _{lg})^{1/2} is m

(c) The average surface-convection resistance is given by A_{ku}\left\langle R_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle q_{ku}\right\rangle _{L}} =a_{s}^{3}\frac{\Delta h_{lg}^{2}}{\mu _{l}c_{p,l}^{3}(T_{s}-T_{lg})^{2}} \left(\frac{\sigma }{g\Delta \rho _{lg}} \right) ^{1/2}Pr_{l}^{n}       , n=3 (water)      ,n=5.1(all    other    fluids) , i.e.,

\left\langle R_{ku}\right\rangle_{L} =\frac{T_{s}-T_{lg}}{\left\langle Q_{ku}\right\rangle _{L}} =\frac{(388.15 − 373.15)(^{\circ }C)}{1.971 × 10^{4} (W)} = 7.611 × 10^{−4 \circ }C/W 

 

A_{ku}\left\langle R_{ku}\right\rangle_{L} = (0.2)^{2} (m^{2}) × 7.611 × 10^{−4} (^{\circ}C/W) = 3.044 × 10^{−5\circ} C/(W/m^{2})
b
Capture

Related Answered Questions