Question 6.10: The wind-chill index is the rate of surface-convection (and ...

The wind-chill index is the rate of surface-convection (and surface-radiation) heat transfer per unit area \left\langle q_{ku}\right\rangle _{D} from a person with a surface temperature T_{s} in a crossing wind [1]. This is depicted in Figure (a). The heat loss is characterized by the ambient air velocity u_{f,∞}(m/s) and temperature T_{f,∞}(^{\circ }C). The body is approximated as a long cylinder. The average Nusselt number \left\langle Nu\right\rangle _{D} is determined empirically as a function of the wind velocity. The correlation used is slightly different than that listed in Table.
The equivalent wind-chill temperature (also called the wind-chill factor) is
the apparent ambient temperature (T_{f,∞})_{app} that results in the same heat loss but under a calm wind condition (the calm wind velocity is considered to be 6.4 km/hr), \left\langle Nu\right\rangle _{D,calm}

(a) Draw the thermal circuit diagram.
(b) Determine the wind-chill index \left\langle q_{ku}\right\rangle _{D} .
(c) Determine the wind-chill factor (T_{f,∞})_{app} .
D = 35 cm,    u_{f,∞} = 10 km/hr,   T_{s} = 33^{\circ }C,   and   T_{f,∞} = 10^{\circ }C.
Evaluate the air properties from Table at T = 300 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is shown in Figure (b). The energy equation is the surface energy equation \triangledown .q\equiv \lim _{\Delta V\rightarrow 0}\frac{\int_{\Delta A}{(q.s_{n})dA} }{\Delta V} =\lim _{\Delta V\rightarrow 0}\frac{Q\mid_{\Delta A}}{\Delta V} , which reduces to Q\mid _{A} = \left\langle Q_{ku}\right\rangle _{D} = \dot{S}_{r}.
(b) The surface-convection heat flux is given by \left\langle Q_{ku}\right\rangle _{L( or D)}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L(or D)} } =A_{ku}\frac{k_{f}}{L(or D)}\left\langle Nu\right\rangle _{L(or D)}(T_{s}-T_{f,\infty })   ,Re_{L(or D)}=\frac{u_{f,\infty }L(or D)}{v_{f}} as

\left\langle q_{ku}\right\rangle _{D} =\frac{\left\langle Q_{ku}\right\rangle _{D}}{A_{ku}} =\left\langle Nu\right\rangle _{ D}\frac{k_{f}}{ D}(T_{s}-T_{f,\infty }) 

In order to evaluate \left\langle Nu\right\rangle _{D} from Table, we need to first determine the Reynolds number given by \left\langle Q_{ku}\right\rangle _{L( or D)}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L(or D)} } =A_{ku}\frac{k_{f}}{L(or D)}\left\langle Nu\right\rangle _{L(or D)}(T_{s}-T_{f,\infty })   ,Re_{L(or D)}=\frac{u_{f,\infty }L(or D)}{v_{f}}, Re_{D} = u_{f,∞}D/ν_{f} . From Table, we have for T = 300 K

ν_{f} = 15.66 × 10^{−6} m^{2}/s                Table
k_{f} = 0.0267 W/m-K                 Table
Pr = 0.69              Table

Then the Reynolds number is

Re_{D}=\frac{u_{f,\infty }D}{v_{f}}=\frac{\frac{10\times 10^{3}}{3,600} (m/s)\times 0.35(m)}{15.66 × 10^{−6} (m^{2}/s)} = 6.208 × 10^{4}   

From Table, we have

\left\langle Nu\right\rangle _{D} = a_{1}Re^{a2}_{ D} Pr^{1/3}    , a_{1} = 0.027     , a_{2} = 0.805  

 

\left\langle Nu\right\rangle _{D} =0.027(6.208 × 10^{4} ) ^{0.805}(0.69)^{1/3} = 172.2

For \left\langle q_{ku}\right\rangle _{D}, we have

\left\langle q_{ku}\right\rangle _{D}=172.2 × \frac{0.06267(W/m-K)}{0.35(m)} (33 − 10)(^{\circ }C)

 

= 302.1 W/m^{2}                           wind-chill index.

(c) The wind-chill factor is defined as

\left\langle q_{ku}\right\rangle _{D}=\frac{k_{f}}{D}\left\langle Nu\right\rangle _{D,calm}[T_{s}-\left(T_{f,\infty }\right) _{app}]

or

\left(T_{f,\infty }\right) _{app}=T_{s}-\frac{\left\langle q_{ku}\right\rangle_{D}D }{k_{f}\left\langle Nu\right\rangle _{D,calm}}

where \left\langle Nu\right\rangle _{D,calm} is for u_{f,∞} = 6.4 km/hr. We need to determine \left\langle Nu\right\rangle _{D,calm} and first we calculate Re_{D}, i.e.,

Re_{D}=\frac{\frac{6.4\times 10^{3}}{3,600} (m/s) × 0.35(m)}{15.66 × 10^{−6} (m^{2}/s)} = 3.974 × 10^{4} \simeq 4 × 10^{4}

From Table, this is in the same range of Re_{D} as above, i.e.,

\left\langle Nu\right\rangle _{D} = 0.027(3.947 × 10^{4} )^{0.805}(0.69)^{1/3} = 120.2

Then

(T_{f,∞})_{app} = 33(^{\circ}C) −\frac{302.1(W/m^{2} ) × 0.35(m)}{0.0267(W/m-K) × 120.2} = 33(^{\circ }C) − 32.94(^{\circ }C)

= 0.06183^{\circ}C                       wind-chill factor (apparent ambient temperature).

b
c
22_1
6_3
1

Related Answered Questions