Question 5.35: The field and armature resistance of a 500 V D C series moto...

The field and armature resistance of a 500 V D C series motor is 0.2 ohm and 0.3 ohm respectively. The motor runs at 500 rpm when drawing a current of 49 A. If the load torque varies as the square of the speed, determine the value of the external resistance to be added in series with the armature for the motor to run at 450 rpm Assume linear magnetisation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{array}{l}\text { Here, } N_{1}=500 rpm ; I_{a 1}=40 A ; V=600 V ; N_{2}=450 rpm \\T \propto N^{2} ; R_{a}=0.3 \Omega ; R_{s e}=0.2 \Omega ; \phi \propto I_{a} \\E_{b 1}=V-I_{a 1}\left(R_{a}+R_{s e}\right)=600-40(0.3+0.2)=580 V \\T \propto \phi I_{a} \text { or } T \propto I_{a}^{2}\end{array}

 

and T \propto N^{2}

 

\therefore \quad I_{a}^{2}=N^{2}

 

and \left(\frac{I_{a 2}}{I_{a 1}}\right)^{2}=\left(\frac{N_{2}}{N_{1}}\right)^{2}

 

\begin{array}{l}\text { or }\\I_{a 2}=\frac{N_{2}}{N_{1}} \times I_{a 1}=\frac{450}{500} \times 40=36 A\end{array}

 

\text { Let } R \text { be the resistance added in series with the armature }

 

E_{b 2}=V-I_{a 2}\left(R_{a}+R_{s c}+R\right)=600-36\left(0.3^{0}+0.2+R\right)=582-36 R

 

\text { Now } \quad \frac{N_{2}}{N_{1}}=\frac{E_{b 2}}{\phi_{2}} \times \frac{\phi_{1}}{E_{b 1}} \text { or } \frac{N_{2}}{N_{1}}=\frac{E_{b 2}}{I_{a 2}} \times \frac{I_{a 1}}{E_{b 1}}

 

or \frac{450}{500}=\frac{(582-36 R)}{36} \times \frac{40}{580}

 

or 582-36 R=\frac{450 \times 36 \times 580}{500 \times 40}

 

or \quad 582-36 R =469.8  or R= 3 . 1 1 7 \Omega

 

Related Answered Questions