Here are the Kα wavelengths of a few elements:
Element TiVCrMnFeλ(pm)275250229210193 Element CoNiCuZnGaλ(pm)179166154143134
Make a Moseley plot (like that in Fig. 40-16) from these data and verify that its slope agrees with the value given for C in Module 40-6.
From the data given in the problem, we calculate frequencies (using Eq. 38-1), take their square roots, look up the atomic numbers (see Appendix F), and do a least-squares fit to find the slope: the result is 5.02 × 107 with the odd-sounding unit of a square root of a hertz. We remark that the least squares procedure also returns a value for the y-intercept of this statistically determined “best-fit” line; that result is negative and would appear on a graph like Fig. 40-17 to be at about – 0.06 on the vertical axis. Also, we can estimate the slope of the Moseley line shown in Fig. 40-17:
f=λc. (38-1)
40−11(1.95−0.50)109 Hz1/2≈5.0×107 Hz1/2