Question 7.3: Ethylene glycol (antifreeze) liquid is cooled by passing it ...

Ethylene glycol (antifreeze) liquid is cooled by passing it through a bank of tubes, as shown in Figure (a). The tubes are maintained at a surface temperature T_{s} = 45^{\circ }C by an internal flow of a phase changing fluid. The tubes are arranged within a cubic space (L × l × w) with L = l = w = 15 cm. The tube diameter is D = 1 cm and there are 11 tubes along L and 11 tubes along l. The ethylene glycol mass flow rate is \dot{M}_{ f} = 5 kg/s and its inlet temperature is \left\langle T_{f}\right\rangle _{0} = 90^{\circ}C

(a) Draw the thermal circuit diagram.
(b) Determine the particle Reynolds number, Re_{D,p} .
(c) Determine the particle Nusselt number \left\langle Nu\right\rangle _{D,p} .
(d) Determine NTU.

(e) Determine the heat transfer rate \left\langle Q_{u}\right\rangle _{L-0}.
(f) Determine the exit temperature of the ethylene glycol stream \left\langle T_{f}\right\rangle _{L}.
Evaluate the properties of the ethylene glycol at T = 350 K, using Table

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is shown in Figure (b).
(b) We will use the correlation in Table for discontinuous solid surfaces. First we need to evaluate the particle diameter from D_{p}\equiv \frac{6V_{s}}{A_{ku}} =\frac{6(1-\epsilon )V}{A_{ku}} , i.e.,

D_{p}=\frac{6V_{s}}{A_{ku}}

Here the tubes should be treated as solid (because the surface convection under study occurs on the outside surface), and we have for each tube

V_{s} = πD^{2} w/4

 

A_{ku} = πDw. 

Then

D_{p}=\frac{6πD^{2} w}{4πDw} =\frac{6}{4}D=\frac{3}{2}D= 1.5 × (0.01)(m)

 

= 1.5 × 10^{−2} m.

The porosity \epsilon is defined by \epsilon \equiv \frac{V_{f}}{V} \equiv \frac{V_{f}}{V_{s}+V_{f}} ,  or  \frac{V_{s}}{V_{s}+V_{f}}=1-\epsilon as

\epsilon = \frac{V_{f}}{V_{s}+V_{f}}=\frac{Llw − N_{t}πD^{2} w/4}{Llw}

 

=1-\frac{N_{t}πD^{2}}{4Ll}

where N_{t} is the number of tubes, which here is N_{t} = 11 × 11 = 121. Then

\epsilon =1-\frac{121 × π × (10^{−2})^{2}(m)^{2}}{4 × (0.015)^{2} (m)^{2}} = 0.5776. 

The particle Reynolds number is defined by Re_{D,p}\equiv \frac{\rho _{f}\left\langle u_{f}\right\rangle D_{p} }{\mu _{f}(1-\epsilon )}   as

Re_{D,p}=\frac{\rho _{f}\left\langle u_{f}\right\rangle D_{p} }{\mu _{f}(1-\epsilon )}

where \left\langle u_{f}\right\rangle is found from \dot{M}_{ f} in \dot{M}_{f}=A_{u}\dot{m}_{f}=A_{u}\rho _{f}\left\langle u_{f}\right\rangle , i.e.,

\dot{M}_{f}=A_{u}\rho _{f}\left\langle u_{f}\right\rangle

or

\left\langle u_{f}\right\rangle=\frac{\dot{M}_{f}}{A_{u}\rho _{f}}            ,A_{u}= l\times w

Then, using this in the expression for Re_{D,p} , we have

Re_{D,p}=\frac{\dot{M}_{f}D_{p}}{\mu _{f}(1-\epsilon )lw}

From Table and at T = 350 K, for ethylene glycol we have

\rho _{f} = 1,079 kg/m^{3}                Table
c_{p,f} = 2,640 J/kg-K                                     Table
ν_{f} = 3.25 × 10^{−6} m^{2}/s                         Table
k_{f} = 0.261 W/m-K                                           Table
Pr = 35.2                                                Table

Then

Re_{D,p}=\frac{5(kg/s) × 1.5 × 10^{−2} (m)}{3.25 × 10^{−6}(m^{2}/s) × 1,079(kg/m^{3} )(1 − 0.5776)(0.15)^{2}(m)^{2}}

 

= 2.251 × 10^{3} 

(c) The correlation for \left\langle Nu\right\rangle _{D,p},p is given in Table  as

  \left\langle Nu\right\rangle _{D,p}= 2 + (0.4Re^{1/2}_{ D,p} + 0.2Re^{2/3}_{ D,p} )Pr^{0.4} . 

Then

\left\langle Nu\right\rangle _{D,p}= 2 + [0.4 × (2.251 × 10^{3} )^{ 1/2} + 0.2 × (2.251 × 10^{3} )^{ 2/3} ](35.2)^{0.4} 

= 223.6.

Note the rather large \left\langle Nu\right\rangle _{D,p} .

(d) The NTU is defined by NTU\equiv \frac{R_{u,f}}{\left\langle R_{ku}\right\rangle _{D}} =\frac{1}{\left\langle R_{ku}\right\rangle_{D} (\dot{M}c_{p})_{f}}=\frac{A_{ku}\left\langle Nu\right\rangle _{D}k_{f}/D}{(\dot{M}c_{p})_{f}} and, using the definition of \left\langle Nu\right\rangle _{D,p} (i.e., therelation between \left\langle Nu\right\rangle _{D,p} and \left\langle R_{ku}\right\rangle _{L}), as given by \left\langle Nu\right\rangle _{D,p}\equiv \frac{D_{p}}{A_{ku}\left\langle R_{ku}\right\rangle _{D,p}k_{f}} \left(\frac{\epsilon }{1-\epsilon } \right) , we have

  NTU =\frac{1}{(\dot{M}c_{p})_{f}\left\langle R_{ku}\right\rangle_{D} }=\frac{A_{ku}}{(\dot{M}c_{p})_{f}} \frac{\left\langle Nu\right\rangle _{D,p}k_{f}}{D_{p}} \frac{1-\epsilon }{\epsilon }  

where

A_{ku} = N_{t}πDw  

Then

  NTU =\frac{11 × 11 × π × 0.01(m) × 0.15(m) × 223.6 × 0.261(W/m-K) × (1 − 0.5776)}{5(kg/s) × 2,640(J/kg-^{\circ }C) × 0.015(m) × 0.5776}  

= 0.1231.

(e) The heat transferred rate is given by \left\langle Q_{u}\right\rangle _{L-0}\equiv \frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{\left\langle R_{u}\right\rangle _{L}} and \left\langle R_{u}\right\rangle _{L}=\frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{(\dot{M}c_{p})_{f}(\left\langle T_{f}\right\rangle _{L}-\left\langle T_{f}\right\rangle _{0})} =\frac{1}{(\dot{M}c_{p})_{f}\epsilon _{he}}=\frac{1}{(\dot{M}c_{p})_{f}(1-e^{-NTU})} , i.e.,

  \left\langle Q_{u}\right\rangle _{L-0}\equiv \frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{\left\langle R_{u}\right\rangle _{L}}  

 

  = − (\left\langle T_{f}\right\rangle _{0}− T_{s})\dot{M}c_{ p} \epsilon _{he}

 

= − (\left\langle T_{f}\right\rangle _{0} − T_{s})\dot{M}c_{ p} (1 − e^{−NTU})

 

= − [90(^{\circ }C) − 45(^{\circ }C)] × 5(kg/s) × 2,640(J/kg-^{\circ } C) × (1 − e^{−0.1231})

 

  = − 6.878 × 10^{4} W

(f) The exit temperature is determined from \epsilon _{h,e}\equiv \frac{\left\langle T_{f}\right\rangle _{L}-\left\langle T_{f}\right\rangle _{0}}{T_{s}-\left\langle T_{f}\right\rangle _{0}} =\frac{\left\langle T_{f}\right\rangle _{0}-\left\langle T_{f}\right\rangle _{L}}{\left\langle T_{f}\right\rangle _{0}-T_{s}} =1-e^{-NTU} , i.e.,

\frac{\left\langle T_{f}\right\rangle _{0}-\left\langle T_{f}\right\rangle _{L}}{\left\langle T_{f}\right\rangle _{0}-T_{s}} =1-e^{-NTU}

or

\left\langle T_{f}\right\rangle _{L} = \left\langle T_{f}\right\rangle _{0} − (1 − e^{−NTU})(\left\langle T_{f}\right\rangle _{0} − T_{s})

 

= 90(^{\circ }C) − (1 − e^{−0.1231})(90 − 45)(^{\circ} C)

 

= 90(^{\circ}C) − 5.212(^{\circ} C) = 84.79^{\circ} C
b
7_5
23_2

Related Answered Questions