Question 7.4: There are many surface-convection heat transfer problems in ...

There are many surface-convection heat transfer problems in which the surfaceconvection surface area per unit volume A_{ku}/V is very large (e.g., Figure). Then due to this large specific surface area (or large NTU), a fluid having a temperature \left\langle T_{f}\right\rangle _{0}, and flowing into this porous solid will come to thermal equilibrium with the solid over a short distance. Show that by using the fluid flow per unit solid volume \dot{n}_{f} , the energy equation for a porous solid of volume V_{s}, with a uniform temperature T_{s}, is given by

(\dot{n}c_{p})_{f}V_{s}(T_{s}-\left\langle T_{f}\right\rangle _{0})=-(\rho c_{p}V)_{s}\frac{dT_{s}}{dt} +\dot{S}_{s}

integral-volume energy equation for porous solid with very large A_{ku}/V_{s}.

Start from(2.72) and allow for the surface-convection heat transfer mechanism
only.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Starting from (2.72) and allowing for surface-convection heat transfer mechanism only, we have

\left\langle Q_{u}\right\rangle _{L-0}=-(\rho c_{p}V)_{s}\frac{dT_{s}}{dt} +\dot{S}_{s}

where from \left\langle Q_{u}\right\rangle _{L-0}\equiv \frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{\left\langle R_{u}\right\rangle _{L}}    , \left\langle R_{u}\right\rangle _{L}=\frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{(\dot{M}c_{p})_{f}(\left\langle T_{f}\right\rangle _{L}-\left\langle T_{f}\right\rangle _{0})} =\frac{1}{(\dot{M}c_{p})_{f}\epsilon _{he}}=\frac{1}{(\dot{M}c_{p})_{f}(1-e^{-NTU})} , and NTU\equiv \frac{R_{u,f}}{\left\langle R_{ku}\right\rangle _{D}} =\frac{1}{\left\langle R_{ku}\right\rangle_{D} (\dot{M}c_{p})_{f}}=\frac{A_{ku}\left\langle Nu\right\rangle _{D}k_{f}/D}{(\dot{M}c_{p})_{f}} , we have

\left\langle Q_{u}\right\rangle _{L-0}=\frac{T_{s}-\left\langle T_{f}\right\rangle _{0}}{\left\langle R_{u}\right\rangle _{L}} =(\dot{M}c_{p})_{f}(1-e^{-NTU})(T_{s}-\left\langle T_{f}\right\rangle _{0})

 

NTU=\frac{A_{ku}\left\langle Nu\right\rangle _{D}k_{f}/D}{(\dot{M}c_{p})_{f}}

 

=\frac{A_{ku}}{V_{s}} \frac{\left\langle Nu\right\rangle _{D}k_{f}/D}{(\dot{n}c_{p})_{f}}  

Now for A_{ku}/V_{s} \gg 1(1/m), we have

NTU → \infty .

This limit of very large number of transfer units results in \left\langle T_{f}\right\rangle _{L}= T_{s}, where T_{s} is the uniform porous solid temperature. Then

\left\langle Q_{u}\right\rangle _{L-0}= (\dot{M}c_{ p} )_{f} (1 − e^{−∞})(T_{s} − \left\langle T_{f}\right\rangle _{0})

 

=(\dot{M}c_{ p} )_{f} (T_{s} − \left\langle T_{f}\right\rangle _{0})

Now using (\dot{M}c_{ p} )_{f} = (\dot{n}c_{p} )_{f} V_{s} , we have

\left\langle Q_{u}\right\rangle _{L-0}= (\dot{n}c_{p} )_{f} V_{s} (T_{s} − \left\langle T_{f}\right\rangle _{0})

Using this in the above energy equation, we have

(\dot{n}c_{p} )_{f} V_{s} (T_{s} − \left\langle T_{f}\right\rangle _{0})=-(\rho c_{p}V)_{s}\frac{dT_{s}}{dt} +\dot{s}_{s}V_{s} 

integral-volume energy equation for porous solid with very large A_{ku}/V_{s}

or

(\dot{n}c_{p} )_{f}(T_{s} − \left\langle T_{f}\right\rangle _{0})= -(\rho c_{p})_{s}\frac{dT_{s}}{dt} +\dot{s}_{s}

Related Answered Questions