Question 6.21: A three-phase, star connected, 20 MVA , 11 kV , 50 Hz altern...

A three-phase, star connected, 20 MVA , 11 kV , 50 Hz alternator produces a short-circuit current equal to full-load current when a field current of 70 A passes through its field winding. The same field current produces an emf of 1820 V (line to line) on open circuit. If the alternator has a resistance between each pair of terminals as measured by D C is 0.16 ohm and the effective resistance is 1.5 times the ohmic resistance, what will be its full-load regulation at (i) 0.707 pf lagging and (ii) 0.8 pf leading.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here, Alternator is three-phase, star connected;

 

  \text { Rating of alternator }=20 MVA =20 \times 10^{6} VA

 

Terminal voltage (line value),   V_{L}=11000 V

 

Open circuit e m f (line value),   E_{L}=1820 V

 

  \text { Resistance between two terminals }=0.16 \text { ohm }

 

  \qquad \text { Resistance measured/phase }=\frac{0.16}{2}=0.08 \text { ohm }

 

\text { Effective resistance/phase, } R=1.5 \times 0.08=0.12 ohm

 

 

\text { pen circuit } e m f \text { (phase value),}E=\frac{E_{L}}{\sqrt{3}}=\frac{1820}{\sqrt{3}}=1050.8 V

 

 

\text { Full load circuit, } I=\frac{20 \times 16^{6}}{\sqrt{3} \times 11000}=1049.7 A

 

 

\text { Short circuit current, } I_{s c}=I=1049.7 A

 

 

\text { Synchronous impedance/phase, } Z_{s}=\frac{E}{I_{s c}}=\frac{1050.8}{1049.7}=1.001 ohm

 

\text { Synchronous reactance/phase, } X_{s} =\sqrt{\left(Z_{s}\right)^{2}-(R)^{2}}  

 

=\sqrt{(0.001)^{2}-(0.12)^{2}}=0.994 ohm

 

 

\text { Terminal voltage (phase value), } V=\frac{V_{L}}{\sqrt{3}}=\frac{11000}{\sqrt{3}}=6351 V

 

 

\text { (i) When } p . f ., \cos \phi=0.707 \text { lagging; } \sin \phi=\sin \cos ^{-1} 0.707=0.707

 

No-load terminal voltage (phase value),

 

  E_{0} =\sqrt{(V \cos \phi+I R)^{2}+\left(V \sin \phi+I X_{s}\right)^{2}}

 

  =\sqrt{(6351 \times 0.707+1049.7 \times 0.12)^{2}+(6351 \times 0.707+1049.7 \times 0.994)^{2}}

 

  =\sqrt{(4616)^{2}+(5533.5)^{2}}=7206 V

 

  \% \text { Reg. }=\frac{E_{0}-V}{V} \times 100=\frac{7206-6351}{6351} \times 100=13.46 \%

 

(ii) When   p . f . \cos \phi=0.8   leading;   \sin \phi=0.6

 

No-load terminal voltage (phase value),

 

  E_{0} =\sqrt{(V \cos \phi+I R)^{2}+\left(V \sin \phi+L X_{s}\right)^{2}}

 

  =\sqrt{(6351 \times 0.8+1049.7 \times 0 \cdot 12)^{2}+(6351 \times 0.6+1049.7 \times 0.994)^{2}}

 

  =\sqrt{(4616)^{2}+(2767)^{2}}=5381.8 V

 

  \% \text { Reg. } =\frac{E_{0}-V}{V} \times 100=\frac{5381.8-6351}{6351} \times 100=-15.26 \%

Related Answered Questions