Question 6.25: The open-circuit test data of a  500 kVA , 4000 volt, 8  pol...

The open-circuit test data of a  500 kVA , 4000 volt, 8  pole,  3 -phase, 50 Hz  alternator is:

ATs, per pole                   2000           3000         3560         5000        6200       7000          8000

Terminal voltage            1990            2900          3400        4000       4400      45900        4800

The equivalent armature reaction expressed in ampere-turn per pole is   1.1 \times   ampere conductors per pole per phase. There are 240 conductors per phase in series. If the inductive voltage drop   8 \%   on full load and the resistance drop is negligible. Then determine (i) Short circuit characteristic (ii) field excitation and regulation for full load at 0-8 p . f . lagging.

 

 

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { Converting three-phase terminal line voltage into phase values, we have }

 

\begin{array}{c}\frac{1990}{\sqrt{3}}, \frac{2900}{\sqrt{3}}, \frac{3400}{\sqrt{3}}, \frac{4000}{\sqrt{3}},\frac{4400}{\sqrt{3}},\frac{4800}{\sqrt{3}}=1150,1675,1963,2310,2540,2650,2770 \\\text { Phase voltage, } V=\frac{4000}{\sqrt{3}}=2310 V\end{array}

 

Open-circuit characteristic is drawn by taking ATs per pole along the abscissa and voltage per phase along the ordinate, as shown in Fig. 6.56.

 

Full load current   I=\frac{k V A \times 1000}{\sqrt{3} \times V_{L}}=\frac{500 \times 1000}{\sqrt{3} \times 4000}=72 A  .

 

Armature reaction A T s  per pole per phase for full load,

 

  =1.1 \times \text { ampere conductors per pole per phase }

 

  =1.1 \times I \times \frac{Z}{P}=1.1 \times 72 \times \frac{240}{8}=2376

 

  \text { Inductive drop } =\text { Leakage reactance drop }=\frac{8}{100} \times \frac{4000}{\sqrt{3}}=185 volt

 

The field A T s or simply field current that is obtained from O C C is used to overcome the effects of armature reaction and leakage reactance. The ATs 2376 are the field A T s for balancing the armature reaction. The field A T s to balance or overcome the leakage reactance can be read off from the O C C graph corresponding to leakage reactance drop of 185 volt and it comes out to be 370 ampere turn.

 

\therefore \quad \text { Short circuit field } A T s=2376+370=2746 \text { ATs. }

 

So the S C C is drawn with two points, one the origin (0,0) and second point is (2746,72), These two points are joined, hence we get a straight line.

 

To determine total ampere-turns, proceed as follows:

 

Draw the phasor diagram as shown in Fig. 6.57. where terminal phase voltage V is taken as reference vector and current lags behind this voltage by an angle 36.87^{\circ}\left(\phi=\cos ^{-1} 0.8=36.87^{\circ}\right) . Here, resistance drop is zero and drop in leakage reactance IX_{s} is 185 V which leads the current vector by 90^{\circ}.

 

\begin{aligned}E &=\sqrt{(V \cos \phi+I R)^{2}+\left(V \sin \phi+I X_{s}\right)^{2}} \\&\left.=\sqrt{(2310 \times 0.8+0)^{2}+(2310 \times 0.6+185)^{2}} \quad \text { (since } R=0\right) \\&=2525 V\end{aligned}

 

From the O C C curve the field A T s corresponding to 2425 volt are 5500 These field A T s, (oa) are drawn at right angle to E as shown in Fig. 6.57. The armature reaction ATs (2376) only are drawn parallel opposition to current I i.e., a b as shown in the Fig. 6.57. The angle between o a and a b, is (90+\phi) \cdot(\angle \delta  between E and V is neglected being small). The resultant vector o b is given as below:

 

\begin{aligned}o b &=\sqrt{o a^{2}+a b^{2}-2 o a \times a b \times \cos \left(90+36.87^{\prime \prime}\right)} \\&=\sqrt{(5500)^{2}+(2376)^{2}+2 \times 5500 \times 2376 \times \cos \left(53.13^{\prime \prime}\right)} \\&=\sqrt{(5500)^{2}+(2376)^{2}+2 \times 5500 \times 2376 \times 0.6}=7180 AT (\text { Ans. })\end{aligned}

 

Corresponding to 7180 AT, the \operatorname{emf} E_{o}  from the O C C curve is 2700 volt and lags the o b by 90^{\circ}  as shown.

 

\% \text { age regulation }=\frac{E_{0}-V}{V} \times 100=\frac{2700-2310}{2310} \times 100=16.88 \%

 

 

6.25

Related Answered Questions