KNOWN: Thermocouple is irradiated by a blackbody furnace at 1500 K with 25 mm² aperture. Optical fiber of prescribed spectral transmissivity in sight path.
FIND: (a) Distance L from the furnace detector should be positioned such that its irradiation is G = 50 W/m² and, (b) Compute and plot irradiation, G, vs separation distance L for the range 100 ≤ L ≤ 400 mm for blackbody furnace temperatures of \mathrm T_{\mathrm f} = 1000, 1500 and 2000 K.
ASSUMPTIONS: (1) Furnace aperture emits diffusely, (2) \mathrm A_{\mathrm d} << L².
SCHEMATIC:
ANALYSIS: (a) The irradiation on the detector due to emission from the furnace which passes through the filter is defined as
G _{ d }= q _{ f \rightarrow d } / A _{ d }=50 W / m ^2 (1)
where the power leaving the furnace and intercepted at the detector is
q _{ f \rightarrow d }=\left[ I _{ f } \cdot A _{ f } \cos \theta_{ f } \cdot \omega_{ d – f }\right] \tau_{\text{filter}}=\left[\frac{\sigma T ^4}{\pi} \cdot A _{ f } \cos \theta_{ f } \cdot \frac{ A _{ d }}{ L ^2}\right] \tau_{\text{filter}}. (2)
The transmittance of the filter is
\tau_{\text {filter }}=\tau_{\lambda 1} F _{0-\lambda T }+\tau_{\lambda 2}\left(1- F _{0-\lambda T }\right)=0 \times 0.4036+0.8(1-0.4036)=0.477 (3)
where F _{0-\lambda T }=0.4036 with λT = 2.4 × 1500 = 3600 µm·K from Table 12.1. Combining Eqs. (1) and (2) and substituting numerical values,
G _{ d }=(1 / \pi) 5.67 \times 10^{-8} W / m ^2 \cdot K ^4 \times(1500 K )^4\left(25 \times 10^{-6} m ^2 \times 1\right)\left( A _{ d } / L ^2\right) \times 0.477 / A _{ d }=50 W / m ^2
find
L = 147 mm.
(b) Using the foregoing equations in the IHT workspace along with the IHT Radiation Tool, Band Emission Factor, G was computed and plotted as a function of L for selected blackbody temperatures.
The irradiation decreases with increasing separation distance x as the inverse square of the distance. At any fixed separation distance, the irradiation increases as \mathrm T_{\mathrm f} increases. In what manner will G depend upon \mathrm T _{\mathrm f}? Is \mathrm G \sim \mathrm T _{\mathrm f}^4? Why not?
COMMENTS: The IHT workspace used to generate the above plot is shown below.
// Irradiation, Eq (2): G = qfd / Ad qfd = Ief * Af * omegadf * tauf omegadf = Ad / L^2 Ief = Ebf / pi Ebf = sigma * Tf^4 sigma = 5.67e-8 // Transmittance, Eq (3): tauf = tau1 * FL1Tf + tau2 * ( 1 – FL1Tf ) /* The blackbody band emission factor, Figure 12.14 and Table 12.1, is */ FL1Tf = F_lambda_T(lambda1,Tf) // Eq 12.30 // where units are lambda (micrometers, mum) and T (K) // Assigned Variables: G = 50 // Irradiation on detector, W/m^2 Tf = 1000 // Furnace temperature, K //Tf = 1500 //Tf = 2000 Af = 25 * 1e-6 // Furnace aperture, m^2 Ad = 0.003 * 0.007 // Detector area, m^2 tau1 = 0 // Spectral transmittance, <= lambda1 tau2 = 0.8 // Spectral transmittance, >= lambda2 lambda1 = 2.4 // Wavelength, mum //L = 0.194 // Separation distance, m L_mm = L * 1000 // Separation distance, mm /* Data Browser Results – Part (a) Ebf FL1Tf Ief L omegadf qfd tauf Ad Af Df G Tf lambda1 sigma tau1 tau2 2.87E5 0.4036 9.137E4 0.1476 0.0009634 0.00105 0.4771 2.1E-5 2.5E-5 0.025 50 1500 2.4 5.67E-8 0 0.8 */
Table: 12.1 Blackbody Radiation Functions
\lambda T,(μm.K) | F_{0→\lambda} | I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} | \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)} |
200 | 0 | 0.375034 ×10^{-27} | 0 |
400 | 0 | 0.490335 ×10^{-13} | 0 |
600 | 0 | 0.104046 ×10^{-8} | 0.000014 |
800 | 0.000016 | 0.991126 ×10^{-7} | 0.001372 |
1,000 | 0.000321 | 0.118505 ×10^{-5} | 0.016406 |
1,200 | 0.002134 | 0.523927 ×10^{-5} | 0.072534 |
1,400 | 0.00779 | 0.134411 ×10^{-4} | 0.186082 |
1,600 | 0.019718 | 0.24913 | 0.344904 |
1,800 | 0.039341 | 0.375568 | 0.519949 |
2,000 | 0.066728 | 0.493432 | 0.683123 |
2,200 | 0.100888 | 0.589649 ×10^{-4} | 0.816329 |
2,400 | 0.140256 | 0.658866 | 0.912155 |
2,600 | 0.18312 | 0.701292 | 0.970891 |
2,800 | 0.227897 | 0.720239 | 0.997123 |
2,898 | 0.250108 | 0.722318 ×10^{-4} | 1 |
3,000 | 0.273232 | 0.720254 ×10^{-4} | 0.997143 |
3,200 | 0.318102 | 0.705974 | 0.977373 |
3,400 | 0.361735 | 0.681544 | 0.943551 |
3,600 | 0.403607 | 0.650396 | 0.900429 |
3,800 | 0.443382 | 0.615225 ×10^{-4} | 0.851737 |
4,000 | 0.480877 | 0.578064 | 0.800291 |
4,200 | 0.516014 | 0.540394 | 0.748139 |
4,400 | 0.548796 | 0.503253 | 0.69672 |
4,600 | 0.57928 | 0.467343 | 0.647004 |
4,800 | 0.607559 | 0.433109 | 0.59961 |
5,000 | 0.633747 | 0.400813 | 0.554898 |
5,200 | 0.65897 | 0.370580 ×10^{-4} | 0.513043 |
5,400 | 0.68036 | 0.342445 | 0.474092 |
5,600 | 0.701046 | 0.316376 | 0.438002 |
5,800 | 0.720158 | 0.292301 | 0.404671 |
6,000 | 0.737818 | 0.270121 | 0.373965 |
6,200 | 0.75414 | 0.249723 ×10^{-4} | 0.345724 |
6,400 | 0.769234 | 0.230985 | 0.319783 |
6,600 | 0.783199 | 0.213786 | 0.295973 |
6,800 | 0.796129 | 0.198008 | 0.274128 |
7,000 | 0.808109 | 0.183534 | 0.25409 |
7,200 | 0.819217 | 0.170256 ×10^{-4} | 0.235708 |
7,400 | 0.829527 | 0.158073 | 0.218842 |
7,600 | 0.839102 | 0.146891 | 0.20336 |
7,800 | 0.848005 | 0.136621 | 0.189143 |
8,000 | 0.856288 | 0.127185 | 0.176079 |
8,500 | 0.874608 | 0.106772 ×10^{-4} | 0.147819 |
9,000 | 0.890029 | 0.901463 × 10^{-5} | 0.124801 |
9,500 | 0.903085 | 0.765338 | 0.105956 |
10,000 | 0.914199 | 0.653279× 10^{-5} | 0.090442 |
10,500 | 0.92371 | 0.560522 | 0.0776 |
11,000 | 0.93189 | 0.483321 | 0.066913 |
11,500 | 0.939959 | 0.418725 | 0.05797 |
12,000 | 0.945098 | 0.364394 ×10^{-5} | 0.050448 |
13,000 | 0.955139 | 0.279457 | 0.038689 |
14,000 | 0.962898 | 0.217641 | 0.030131 |
15,000 | 0.969981 | 0.171866 ×10^{-5} | 0.023794 |
16,000 | 0.973814 | 0.137429 | 0.019026 |
18,000 | 0.98086 | 0.908240 ×10^{-6} | 0.012574 |
20,000 | 0.985602 | 0.62331 | 0.008629 |
25,000 | 0.992215 | 0.276474 | 0.003828 |
30,000 | 0.99534 | 0.140469 ×10^{-6} | 0.001945 |
40,000 | 0.997967 | 0.473891×10^{-7} | 0.000656 |
50,000 | 0.998953 | 0.201605 | 0.000279 |
75,000 | 0.999713 | 0.418597 ×10^{-8} | 0.000058 |
100,000 | 0.999905 | 0.135752 | 0.000019 |