Question 12.55: KNOWN: Thermocouple is irradiated by a blackbody furnace at ......

KNOWN: Thermocouple is irradiated by a blackbody furnace at 1500 K with 25 mm² aperture. Optical fiber of prescribed spectral transmissivity in sight path.

FIND: (a) Distance L from the furnace detector should be positioned such that its irradiation is G = 50 W/m² and, (b) Compute and plot irradiation, G, vs separation distance L for the range 100 ≤ L ≤ 400 mm for blackbody furnace temperatures of \mathrm T_{\mathrm f} = 1000, 1500 and 2000 K.

ASSUMPTIONS: (1) Furnace aperture emits diffusely, (2) \mathrm A_{\mathrm d} << L².

SCHEMATIC:

12.55
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) The irradiation on the detector due to emission from the furnace which passes through the filter is defined as

G _{ d }= q _{ f \rightarrow d } / A _{ d }=50  W / m ^2                  (1)

where the power leaving the furnace and intercepted at the detector is

q _{ f \rightarrow d }=\left[ I _{ f } \cdot A _{ f } \cos \theta_{ f } \cdot \omega_{ d – f }\right] \tau_{\text{filter}}=\left[\frac{\sigma T ^4}{\pi} \cdot A _{ f } \cos \theta_{ f } \cdot \frac{ A _{ d }}{ L ^2}\right] \tau_{\text{filter}}.                       (2)

The transmittance of the filter is

\tau_{\text {filter }}=\tau_{\lambda 1} F _{0-\lambda T }+\tau_{\lambda 2}\left(1- F _{0-\lambda T }\right)=0 \times 0.4036+0.8(1-0.4036)=0.477               (3)

where F _{0-\lambda T }=0.4036 with λT = 2.4 × 1500 = 3600 µm·K from Table 12.1. Combining Eqs. (1) and (2) and substituting numerical values,

G _{ d }=(1 / \pi) 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4 \times(1500  K )^4\left(25 \times 10^{-6}  m ^2 \times 1\right)\left( A _{ d } / L ^2\right) \times 0.477 / A _{ d }=50  W / m ^2
find

L = 147 mm.

(b) Using the foregoing equations in the IHT workspace along with the IHT Radiation Tool, Band Emission Factor, G was computed and plotted as a function of L for selected blackbody temperatures.

The irradiation decreases with increasing separation distance x as the inverse square of the distance. At any fixed separation distance, the irradiation increases as \mathrm T_{\mathrm f} increases. In what manner will G depend upon \mathrm T _{\mathrm f}? Is \mathrm G \sim \mathrm T _{\mathrm f}^4? Why not?

COMMENTS: The IHT workspace used to generate the above plot is shown below.

// Irradiation, Eq (2):
G = qfd / Ad
qfd = Ief * Af * omegadf * tauf
omegadf = Ad / L^2
Ief = Ebf / pi
Ebf = sigma * Tf^4
sigma = 5.67e-8
// Transmittance, Eq (3):
tauf = tau1 * FL1Tf + tau2 * ( 1 – FL1Tf )
/* The blackbody band emission factor, Figure 12.14 and Table 12.1, is */
FL1Tf = F_lambda_T(lambda1,Tf) // Eq 12.30
// where units are lambda (micrometers, mum) and T (K)
// Assigned Variables:
G = 50 // Irradiation on detector, W/m^2
Tf = 1000 // Furnace temperature, K
//Tf = 1500
//Tf = 2000
Af = 25 * 1e-6 // Furnace aperture, m^2
Ad = 0.003 * 0.007 // Detector area, m^2
tau1 = 0 // Spectral transmittance, <= lambda1
tau2 = 0.8 // Spectral transmittance, >= lambda2
lambda1 = 2.4 // Wavelength, mum
//L = 0.194 // Separation distance, m
L_mm = L * 1000 // Separation distance, mm
/* Data Browser Results – Part (a)
Ebf FL1Tf Ief L omegadf qfd tauf Ad Af Df G
Tf lambda1 sigma tau1 tau2
2.87E5 0.4036 9.137E4 0.1476 0.0009634 0.00105 0.4771 2.1E-5 2.5E-5 0.025
50 1500 2.4 5.67E-8 0 0.8 */

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019
12.55b

Related Answered Questions