KNOWN: Spectral transmissivity of a plain and tinted glass.
FIND: (a) Solar energy transmitted by each glass, (b) Visible radiant energy transmitted by each with solar irradiation.
ASSUMPTIONS: (1) Spectral distribution of solar irradiation is proportional to spectral emissive power of a blackbody at 5800 K.
SCHEMATIC:
ANALYSIS: To compare the energy transmitted by the glasses, it is sufficient to calculate the transmissivity of each glass for the prescribed spectral range when the irradiation distribution is that of the solar spectrum. From Eq. 12.55,
\tau_{ S }=\int_0^{\infty} \tau_\lambda \cdot G _{\lambda, S } d \lambda / \int_0^{\infty} G { }_{\lambda, S } d \lambda=\int_0^{\infty} \tau_\lambda \cdot E _{\lambda, b }(\lambda, 5800 K ) d \lambda / E _{ b } (5800 K ).
Recognizing that \tau_\lambda will be constant for the range \lambda_1 \rightarrow \lambda_2, using Eq. 12.31, find
\tau_{ S }=\tau_\lambda \cdot F _{\left(\lambda_1 \rightarrow \lambda_2\right)}=\tau_\lambda\left[ F _{\left(0 \rightarrow \lambda_2\right)}- F _{\left(0 \rightarrow \lambda_1\right)}\right].
(a) For the two glasses, the solar transmissivity, using Table 12.1 for F, is then
Plain glass: \lambda_2=2.5 \mu m \quad \lambda_2 T =2.5 \mu m \times 5800 K =14,500 \mu m \cdot K \quad F _{(0 \rightarrow \lambda 2)}=0.966
\lambda_1=0.3 \mu m \quad \lambda_1 T =0.3 \mu m \times 5800 K =1,740 \mu m \cdot K ~~\quad~~ F_{(0 \rightarrow \lambda_1)}=0.033
\tau_{ S }=0.9[0.966 – 0.033]=0.839.
Tinted glass: \lambda_2=1.5 \mu m \quad \lambda_2 T =1.5 \mu m \times 5800 K =8,700 \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_2\right)}=0.881
\lambda_1=0.5 \mu m \quad \lambda_1 T =0.5 \mu m \times 5800 K =2,900 \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.033
\tau_{ S }=0.9[0.886-0.250]=0.568.
(b) The limits of the visible spectrum are \lambda_1=0.4 \text { and } \lambda_2=0.7 \mu m \text {. } For the tinted glass, \lambda_1=0.5 \mu m rather than 0.4 μm. From Table 12.1,
\lambda_2=0.7 \mu m \quad \lambda_2 T =0.7 \mu m \times 5800 K =4,060 \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_2\right)}=0.491
\lambda_1=0.5 \mu m \quad \lambda_1 T =0.5 \mu m \times 5800 K =2,900 \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.250
\lambda_1=0.4 \mu m \quad \lambda_1 T =0.4 \mu m \times 5800 K =2,320 \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.125
Plain glass: \tau_{\text{vis}}=0.9[0.491-0.125]=0.329
Tinted glass: \tau_{\text{vis}}=0.9[0.491-0.250]=0.217
COMMENTS: For solar energy, the transmissivities are 0.839 for the plain glass vs. 0.568 for the plain and tinted glasses. Within the visible region, \tau_{\text{vis}} is 0.329 vs. 0.217. Tinting reduces solar flux by 32% and visible solar flux by 34%.
Table: 12.1 Blackbody Radiation Functions
\lambda T,(μm.K) | F_{0→\lambda} | I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} | \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)} |
200 | 0 | 0.375034 ×10^{-27} | 0 |
400 | 0 | 0.490335 ×10^{-13} | 0 |
600 | 0 | 0.104046 ×10^{-8} | 0.000014 |
800 | 0.000016 | 0.991126 ×10^{-7} | 0.001372 |
1,000 | 0.000321 | 0.118505 ×10^{-5} | 0.016406 |
1,200 | 0.002134 | 0.523927 ×10^{-5} | 0.072534 |
1,400 | 0.00779 | 0.134411 ×10^{-4} | 0.186082 |
1,600 | 0.019718 | 0.24913 | 0.344904 |
1,800 | 0.039341 | 0.375568 | 0.519949 |
2,000 | 0.066728 | 0.493432 | 0.683123 |
2,200 | 0.100888 | 0.589649 ×10^{-4} | 0.816329 |
2,400 | 0.140256 | 0.658866 | 0.912155 |
2,600 | 0.18312 | 0.701292 | 0.970891 |
2,800 | 0.227897 | 0.720239 | 0.997123 |
2,898 | 0.250108 | 0.722318 ×10^{-4} | 1 |
3,000 | 0.273232 | 0.720254 ×10^{-4} | 0.997143 |
3,200 | 0.318102 | 0.705974 | 0.977373 |
3,400 | 0.361735 | 0.681544 | 0.943551 |
3,600 | 0.403607 | 0.650396 | 0.900429 |
3,800 | 0.443382 | 0.615225 ×10^{-4} | 0.851737 |
4,000 | 0.480877 | 0.578064 | 0.800291 |
4,200 | 0.516014 | 0.540394 | 0.748139 |
4,400 | 0.548796 | 0.503253 | 0.69672 |
4,600 | 0.57928 | 0.467343 | 0.647004 |
4,800 | 0.607559 | 0.433109 | 0.59961 |
5,000 | 0.633747 | 0.400813 | 0.554898 |
5,200 | 0.65897 | 0.370580 ×10^{-4} | 0.513043 |
5,400 | 0.68036 | 0.342445 | 0.474092 |
5,600 | 0.701046 | 0.316376 | 0.438002 |
5,800 | 0.720158 | 0.292301 | 0.404671 |
6,000 | 0.737818 | 0.270121 | 0.373965 |
6,200 | 0.75414 | 0.249723 ×10^{-4} | 0.345724 |
6,400 | 0.769234 | 0.230985 | 0.319783 |
6,600 | 0.783199 | 0.213786 | 0.295973 |
6,800 | 0.796129 | 0.198008 | 0.274128 |
7,000 | 0.808109 | 0.183534 | 0.25409 |
7,200 | 0.819217 | 0.170256 ×10^{-4} | 0.235708 |
7,400 | 0.829527 | 0.158073 | 0.218842 |
7,600 | 0.839102 | 0.146891 | 0.20336 |
7,800 | 0.848005 | 0.136621 | 0.189143 |
8,000 | 0.856288 | 0.127185 | 0.176079 |
8,500 | 0.874608 | 0.106772 ×10^{-4} | 0.147819 |
9,000 | 0.890029 | 0.901463 × 10^{-5} | 0.124801 |
9,500 | 0.903085 | 0.765338 | 0.105956 |
10,000 | 0.914199 | 0.653279× 10^{-5} | 0.090442 |
10,500 | 0.92371 | 0.560522 | 0.0776 |
11,000 | 0.93189 | 0.483321 | 0.066913 |
11,500 | 0.939959 | 0.418725 | 0.05797 |
12,000 | 0.945098 | 0.364394 ×10^{-5} | 0.050448 |
13,000 | 0.955139 | 0.279457 | 0.038689 |
14,000 | 0.962898 | 0.217641 | 0.030131 |
15,000 | 0.969981 | 0.171866 ×10^{-5} | 0.023794 |
16,000 | 0.973814 | 0.137429 | 0.019026 |
18,000 | 0.98086 | 0.908240 ×10^{-6} | 0.012574 |
20,000 | 0.985602 | 0.62331 | 0.008629 |
25,000 | 0.992215 | 0.276474 | 0.003828 |
30,000 | 0.99534 | 0.140469 ×10^{-6} | 0.001945 |
40,000 | 0.997967 | 0.473891×10^{-7} | 0.000656 |
50,000 | 0.998953 | 0.201605 | 0.000279 |
75,000 | 0.999713 | 0.418597 ×10^{-8} | 0.000058 |
100,000 | 0.999905 | 0.135752 | 0.000019 |