A device brings 2 kg of ammonia from 150 kPa, -20°C to 400 kPa, 80°C in a polytropic process. Find the polytropic exponent, n, the work and the heat transfer. Find the total entropy generated assuming a source at 100°C.
A device brings 2 kg of ammonia from 150 kPa, -20°C to 400 kPa, 80°C in a polytropic process. Find the polytropic exponent, n, the work and the heat transfer. Find the total entropy generated assuming a source at 100°C.
C.V. Ammonia of constant mass m_{2}=m_{1}=m out to source.
Energy Eq.3.5: m \left( u _{2}- u _{1}\right)={ }_{1} Q _{2}-{ }_{1} W _{2}
Entropy Eq.6.37: m \left( s _{2}- s _{1}\right)=\int d Q / T +{ }_{1} S _{2 gen }={ }_{1} Q _{2} / T +{ }_{1} S _{2 gen}
Process: {P _{1} v _{1}}^{ n }={ P _{2} v _{2}}^{ n } Eq. (8.27)
State 1: Table B.2.2
v _{1}=0.79774 m ^{3} / kg , \quad s _{1}=5.7465 kJ / kg K , u _{1}=1303.3 kJ / kgState 2: Table B.2.2
v _{2}=0.4216 m ^{3} / kg , \quad s _{2}=5.9907 kJ / kg K , \quad u _{2}=1468.0 kJ / kg\begin{aligned}& \ln \left( P _{2} / P _{1}\right)=\ln \left( v _{1} / v _{2}\right)^{ n }= n \times \ln \left( v _{1} / v _{2}\right) \\& \ln \left(\frac{400}{150}\right)= n \times \ln \left(\frac{0.79774}{0.4216}\right)=0.98083= n \times 0.63773 \\\Rightarrow \quad & n = 1 . 5 3 8\end{aligned}
The work term is integration of PdV as done in text leading to Eq.6.29
\begin{aligned}{ }_{1} W _{2}=& \frac{ m }{1- n }\left( P _{2} v _{2}- P _{1} v _{1}\right) \\&=\frac{2}{1-1.538} \times(400 \times 0.4216-150 \times 0.79774)=-182 . 8 k J\end{aligned}
Notice we did not use Pv = RT as we used the ammonia tables.
{ }_{1} Q _{2}= m \left( u _{2}- u _{1}\right)+{ }_{1} W _{2}=2(1468-1303.3)-182.08= 1 4 7 . 3 ~ k JFrom Eq.6.37
\begin{aligned}{ }_{1} S _{2 gen} &= m \left( s _{2}- s _{1}\right)-{ }_{1} Q _{2} / T =2(5.9907-5.7465)-\frac{147.3}{373.15} \\&= 0 . 0 9 3 6 kJ / K\end{aligned}Notice:
n = 1.54, k = 1.3
n > k
…………………………………
Eq.3.5: E_{2}-E_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}
Eq.6.37 : S_{2}-S_{1}=\int_{1}^{2} d S=\int_{1}^{2} \frac{\delta Q}{T}+{ }_{1} S_{2 gen}
Eq.8.27 : \phi =(e−T_{0}s+ P_{0}v)−(e_{0} −T_{0}s_{0} + P_{0}v_{0})
Eq.6.29 :
\begin{aligned}{ }_{1} W_{2} &=\int_{1}^{2} P d V=\text { constant } \int_{1}^{2} \frac{d V}{V^{n}} \\&=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}\end{aligned}