Question 6.238E: A cylinder/piston contains 4 ft^3 of air at 16 lbf/in.^2, 77...

A cylinder/piston contains 4 ft ^{3} of air at 16 lbf / in. ^{2}, 77 F. The air is compressed in a reversible polytropic process to a final state of 120 lbf / in. ^{2}, 400 F. Assume the heat transfer is with the ambient at 77 F and determine the polytropic exponent n and the final volume of the air. Find the work done by the air, the heat transfer and the total entropy generation for the process.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Air of constant mass m _{2}= m _{1}= m out to ambient.

Energy Eq.3.5:            m \left( u _{2}- u _{1}\right)={ }_{1} Q _{2}-{ }_{1} W _{2}

Entropy Eq.6.37:        m \left( s _{2}- s _{1}\right)=\int dQ / T +{ }_{1} S _{2  \text { gen }} ={ }_{1} Q _{2} / T _{0}+{ }_{1} S _{2  \text { gen }}

Process:      {Pv _{1}}^{ n }= {P _{2} v _{2}}^{ n }          Eq.6.27

State 1:    \left( T _{1}, P _{1}\right)           State 2:  \left( T _{2}, P _{2}\right)

Thus the unknown is the exponent n.

m =\left( P _{1} V _{1}\right) /\left( RT _{1}\right)=(16 \times 4 \times 144) /(53.34 \times 537)=0.322   lbm

The relation from the process and ideal gas is in Eq.6.28

T _{2} / T _{1}=\left( P _{2} / P _{1}\right)^{\frac{ n -1}{ n }} \Rightarrow \frac{ n -1}{ n }=\ln \left( T _{2} / T _{1}\right) / \ln \left( P _{2} / P _{1}\right)=0.2337

 

n = 1.305,  V_{2}=V_{1}\left(P_{1} / P_{2}\right)^{1 / n}=4 \times(16 / 20) 1 / 1.305=0.854   ft ^{3}

 

\begin{aligned}{ }_{1} W _{2} &=\int PdV =\frac{ P _{2} V _{2}- P _{1} V _{1}}{1- n } \\&=[(120 \times 0.854-16 \times 4)(144 / 778)] /(1-1.305)=- 2 3 . 3 5   Btu / lbm\end{aligned}

 

\begin{aligned}{ }_{1} Q _{2} &= m \left( u _{2}- u _{1}\right)+{ }_{1} W _{2}= m C _{ v }\left( T _{2}- T _{1}\right)+{ }_{1} W _{2} \\&=0.322 \times 0.171 \times(400-77)-23.35=- 5 . 5 6    Btu / lbm\end{aligned}

 

\begin{aligned}s _{2}- s _{1} &= C _{ p } \ln \left( T _{2} / T _{1}\right)- R \ln \left( P _{2} / P _{1}\right) \\&=0.24 \ln (860 / 537)-(53.34 / 778) \ln (120 / 16)=-0.0251   Btu / lbm R\end{aligned}

 

\begin{aligned}{ }_{1} S _{2  \text { gen }} = m &\left( s _{2}- s _{1}\right)-{ }_{1} Q _{2} / T _{0} \\&=0.322 \times(-0.0251)+(5.56 / 537)= 0 . 0 0 2 2 6   Btu / R\end{aligned}

…………………………………

Eq.3.5: E_{2}-E_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}

Eq.6.37 : S_{2}-S_{1}=\int_{1}^{2} d S=\int_{1}^{2} \frac{\delta Q}{T}+{ }_{1} S_{2 gen}

Eq.6.27 : P V^{n}=\text { constant }=P_{1} V_{1}^{n}=P_{2} V_{2}^{n}

Eq.6.28 :
\begin{array}{l}\frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n} \\\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(n-1) / n}=\left(\frac{V_{1}}{V_{2}}\right)^{n-1}\end{array}

 

Related Answered Questions