Question 6.242E: A farmer runs a heat pump using 2.5 hp of power input. It ke...

A farmer runs a heat pump using 2.5 hp of power input. It keeps a chicken hatchery at a constant 86 F while the room loses 20 Btu/s to the colder outside ambient at 50 F. What is the rate of entropy generated in the heat pump? What is the rate of entropy generated in the heat loss process?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Hatchery, steady state.
Power:            \dot{ W }=2.5   hp =2.52544 .4 / 3600=1.767   Btu / s

To have steady state at 86 F for the hatchery

Energy Eq.:    0=\dot{ Q }_{ H }-\dot{ Q }_{\text {Loss }} \quad \Rightarrow \quad \dot{ Q }_{ H }=\dot{ Q }_{\text {Loss }}=20   Btu / s

C.V. Heat pump, steady state

Energy eq.:          0=\dot{ Q }_{ L }+\dot{ W }-\dot{ Q }_{ H } \quad \Rightarrow \quad \dot{ Q }_{ L }=\dot{ Q }_{ H }-\dot{ W }=18.233   Btu / s

Entropy Eq.:      0=\frac{\dot{ Q }_{ L }}{ T _{ L }}-\frac{\dot{ Q }_{ H }}{ T _{ H }}+\dot{ S }_{ gen  HP }

\dot{ S }_{ gen  HP }=\frac{\dot{ Q }_{ H }}{ T _{ H }}-\frac{\dot{ Q }_{ L }}{ T _{ L }}=\frac{20}{545.7}-\frac{18.233}{509.7}= 0 . 0 0 0 8 7 8 \frac{ B t u }{ s  R }

 

C.V. From hatchery at 86 F to the ambient 50 F. This is typically the walls and the outer thin boundary layer of air. Through this goes \dot{ Q }_{\text {Loss }}.

 

Entropy Eq.:          0=\frac{\dot{ Q }_{ Loss }}{ T _{ H }}-\frac{\dot{ Q }_{ Loss }}{ T _{ amb }}+\dot{ S }_{ gen \text { walls }}

\dot{ S }_{\text {gen walls }}=\frac{\dot{ Q }_{\text {Loss }}}{ T _{ amb }}-\frac{\dot{ Q }_{\text {Loss }}}{ T _{ H }}=\frac{20}{509.7}-\frac{20}{545.7}= 0 . 0 0 2 5 9 \frac{ Btu }{ s R }
1

Related Answered Questions