Question 4.3: Establish the expression of the differential of the internal...

Establish the expression of the differential of the internal energy  dU \Bigl(S (T, V),V\Bigr) as a function of the temperature T and the volume V. In the particular case of a gas that satisfies the relation pV = NR T, show that dU \Bigl(S (T, V),V\Bigr) is proportional to dT.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

According to the mathematical definition (4.76), the differential dU \Bigl(S(T,V),V\Bigr) is expressed as,

df \Bigl(x(y,z),y\Bigr) = \Biggl(\frac{\partial f\Bigl(x(y,z),y\Bigr) }{\partial x (y,z)}\frac{\partial x(y,z)}{\partial y} + \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial y } \Biggr) dy +\Biggl(\frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)}\frac{\partial x (y,z)}{\partial z} \Biggr) dz .                            (4.76)

dU \Bigl(S(T,V),V\Bigr) = \Biggl(\frac{\partial U\Bigl(S(T,V),V\Bigr) }{\partial S (T,V)}\frac{\partial S(T,V)}{\partial T}  \Biggr) dT +\Biggl(\frac{\partial U \Bigl(S(T,V),V\Bigr) }{\partial S (S,V)}\frac{\partial S (T,V)}{\partial V} +\frac{\partial U \Bigl(S(T,V),V\Bigr) }{\partial V }\Biggr) dV .

Using the definitions (2.9), (2.10), (4.77) and the Maxwell relation (4.71), we obtain,

T (S, V, N_1, . . . , N_r) ≡ \frac {\partial U (S, V, N_1, . . . ,N_r) }{\partial S}.                          (2.9)

p (S, V, N_1, . . . , N_r) ≡ – \frac {\partial U (S, V, N_1, . . . ,N_r) }{\partial v}.                          (2.10)

\frac{\partial f}{\partial y}\mid _z ≡ \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)} \frac{\partial x(y,z)}{\partial y} + \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial y }.

\frac{\partial f}{\partial z}\mid _y ≡ \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)} \frac{\partial x(y,z)}{\partial z} .                (4.77)

\frac{\partial p}{\partial T} = \frac{\partial S}{\partial V}.                                      (4.71)

dU \Bigl(S(T,V),V\Bigr) = \frac{\partial U}{\partial T}\mid _V dT + \Bigl(T \frac{\partial p (T,V)}{\partial T} – p (T,V)\Bigr) dV .

In the particular case of a gas that satisfies the relation p V = NR T, the terms inside the brackets cancel each other out and the differential reduces to,

dU \Bigl(S(T,V),V\Bigr) = \frac{\partial U}{\partial T}\mid _V dT .

which is indeed proportional to dT.

Related Answered Questions